GCC Code Coverage Report | |||||||||||||||||||||
|
|||||||||||||||||||||
Line | Branch | Exec | Source |
1 |
#include "crypto/crypto_keys.h" |
||
2 |
#include "crypto/crypto_common.h" |
||
3 |
#include "crypto/crypto_dsa.h" |
||
4 |
#include "crypto/crypto_ec.h" |
||
5 |
#include "crypto/crypto_dh.h" |
||
6 |
#include "crypto/crypto_rsa.h" |
||
7 |
#include "crypto/crypto_util.h" |
||
8 |
#include "async_wrap-inl.h" |
||
9 |
#include "base_object-inl.h" |
||
10 |
#include "env-inl.h" |
||
11 |
#include "memory_tracker-inl.h" |
||
12 |
#include "node.h" |
||
13 |
#include "node_buffer.h" |
||
14 |
#include "string_bytes.h" |
||
15 |
#include "threadpoolwork-inl.h" |
||
16 |
#include "util-inl.h" |
||
17 |
#include "v8.h" |
||
18 |
|||
19 |
namespace node { |
||
20 |
|||
21 |
using v8::Array; |
||
22 |
using v8::Context; |
||
23 |
using v8::Function; |
||
24 |
using v8::FunctionCallbackInfo; |
||
25 |
using v8::FunctionTemplate; |
||
26 |
using v8::Int32; |
||
27 |
using v8::Just; |
||
28 |
using v8::Local; |
||
29 |
using v8::Maybe; |
||
30 |
using v8::MaybeLocal; |
||
31 |
using v8::NewStringType; |
||
32 |
using v8::Nothing; |
||
33 |
using v8::Number; |
||
34 |
using v8::Object; |
||
35 |
using v8::String; |
||
36 |
using v8::Uint32; |
||
37 |
using v8::Undefined; |
||
38 |
using v8::Value; |
||
39 |
|||
40 |
namespace crypto { |
||
41 |
namespace { |
||
42 |
4070 |
void GetKeyFormatAndTypeFromJs( |
|
43 |
AsymmetricKeyEncodingConfig* config, |
||
44 |
const FunctionCallbackInfo<Value>& args, |
||
45 |
unsigned int* offset, |
||
46 |
KeyEncodingContext context) { |
||
47 |
// During key pair generation, it is possible not to specify a key encoding, |
||
48 |
// which will lead to a key object being returned. |
||
49 |
✓✗✓✓ |
12210 |
if (args[*offset]->IsUndefined()) { |
50 |
✗✓ | 584 |
CHECK_EQ(context, kKeyContextGenerate); |
51 |
✓✗✗✓ |
1752 |
CHECK(args[*offset + 1]->IsUndefined()); |
52 |
584 |
config->output_key_object_ = true; |
|
53 |
} else { |
||
54 |
3486 |
config->output_key_object_ = false; |
|
55 |
|||
56 |
✓✗✗✓ |
6972 |
CHECK(args[*offset]->IsInt32()); |
57 |
3486 |
config->format_ = static_cast<PKFormatType>( |
|
58 |
✓✗ | 10458 |
args[*offset].As<Int32>()->Value()); |
59 |
|||
60 |
✓✗✓✓ |
6972 |
if (args[*offset + 1]->IsInt32()) { |
61 |
3986 |
config->type_ = Just<PKEncodingType>(static_cast<PKEncodingType>( |
|
62 |
✓✗ | 5979 |
args[*offset + 1].As<Int32>()->Value())); |
63 |
} else { |
||
64 |
✓✓✗✓ ✓✓✓✗ ✗✓✗✓ |
1493 |
CHECK( |
65 |
(context == kKeyContextInput && |
||
66 |
config->format_ == kKeyFormatPEM) || |
||
67 |
(context == kKeyContextGenerate && |
||
68 |
config->format_ == kKeyFormatJWK)); |
||
69 |
✓✗✗✓ |
4479 |
CHECK(args[*offset + 1]->IsNullOrUndefined()); |
70 |
1493 |
config->type_ = Nothing<PKEncodingType>(); |
|
71 |
} |
||
72 |
} |
||
73 |
|||
74 |
4070 |
*offset += 2; |
|
75 |
4070 |
} |
|
76 |
|||
77 |
3238 |
ParseKeyResult TryParsePublicKey( |
|
78 |
EVPKeyPointer* pkey, |
||
79 |
const BIOPointer& bp, |
||
80 |
const char* name, |
||
81 |
// NOLINTNEXTLINE(runtime/int) |
||
82 |
const std::function<EVP_PKEY*(const unsigned char** p, long l)>& parse) { |
||
83 |
unsigned char* der_data; |
||
84 |
long der_len; // NOLINT(runtime/int) |
||
85 |
|||
86 |
// This skips surrounding data and decodes PEM to DER. |
||
87 |
{ |
||
88 |
3238 |
MarkPopErrorOnReturn mark_pop_error_on_return; |
|
89 |
3238 |
if (PEM_bytes_read_bio(&der_data, &der_len, nullptr, name, |
|
90 |
✓✓ | 3238 |
bp.get(), nullptr, nullptr) != 1) |
91 |
2271 |
return ParseKeyResult::kParseKeyNotRecognized; |
|
92 |
} |
||
93 |
|||
94 |
// OpenSSL might modify the pointer, so we need to make a copy before parsing. |
||
95 |
967 |
const unsigned char* p = der_data; |
|
96 |
967 |
pkey->reset(parse(&p, der_len)); |
|
97 |
967 |
OPENSSL_clear_free(der_data, der_len); |
|
98 |
|||
99 |
✓✗ | 967 |
return *pkey ? ParseKeyResult::kParseKeyOk : |
100 |
1934 |
ParseKeyResult::kParseKeyFailed; |
|
101 |
} |
||
102 |
|||
103 |
1229 |
ParseKeyResult ParsePublicKeyPEM(EVPKeyPointer* pkey, |
|
104 |
const char* key_pem, |
||
105 |
int key_pem_len) { |
||
106 |
2458 |
BIOPointer bp(BIO_new_mem_buf(const_cast<char*>(key_pem), key_pem_len)); |
|
107 |
✗✓ | 1229 |
if (!bp) |
108 |
return ParseKeyResult::kParseKeyFailed; |
||
109 |
|||
110 |
ParseKeyResult ret; |
||
111 |
|||
112 |
// Try parsing as a SubjectPublicKeyInfo first. |
||
113 |
1229 |
ret = TryParsePublicKey(pkey, bp, "PUBLIC KEY", |
|
114 |
217 |
[](const unsigned char** p, long l) { // NOLINT(runtime/int) |
|
115 |
217 |
return d2i_PUBKEY(nullptr, p, l); |
|
116 |
}); |
||
117 |
✓✓ | 1229 |
if (ret != ParseKeyResult::kParseKeyNotRecognized) |
118 |
217 |
return ret; |
|
119 |
|||
120 |
// Maybe it is PKCS#1. |
||
121 |
✗✓ | 1012 |
CHECK(BIO_reset(bp.get())); |
122 |
1012 |
ret = TryParsePublicKey(pkey, bp, "RSA PUBLIC KEY", |
|
123 |
15 |
[](const unsigned char** p, long l) { // NOLINT(runtime/int) |
|
124 |
15 |
return d2i_PublicKey(EVP_PKEY_RSA, nullptr, p, l); |
|
125 |
}); |
||
126 |
✓✓ | 1012 |
if (ret != ParseKeyResult::kParseKeyNotRecognized) |
127 |
15 |
return ret; |
|
128 |
|||
129 |
// X.509 fallback. |
||
130 |
✗✓ | 997 |
CHECK(BIO_reset(bp.get())); |
131 |
1994 |
return TryParsePublicKey(pkey, bp, "CERTIFICATE", |
|
132 |
735 |
[](const unsigned char** p, long l) { // NOLINT(runtime/int) |
|
133 |
735 |
X509Pointer x509(d2i_X509(nullptr, p, l)); |
|
134 |
✓✗ | 735 |
return x509 ? X509_get_pubkey(x509.get()) : nullptr; |
135 |
997 |
}); |
|
136 |
} |
||
137 |
|||
138 |
900 |
ParseKeyResult ParsePublicKey(EVPKeyPointer* pkey, |
|
139 |
const PublicKeyEncodingConfig& config, |
||
140 |
const char* key, |
||
141 |
size_t key_len) { |
||
142 |
✗✓ | 900 |
if (config.format_ == kKeyFormatPEM) { |
143 |
return ParsePublicKeyPEM(pkey, key, key_len); |
||
144 |
} else { |
||
145 |
✗✓ | 900 |
CHECK_EQ(config.format_, kKeyFormatDER); |
146 |
|||
147 |
900 |
const unsigned char* p = reinterpret_cast<const unsigned char*>(key); |
|
148 |
✓✓ | 1800 |
if (config.type_.ToChecked() == kKeyEncodingPKCS1) { |
149 |
22 |
pkey->reset(d2i_PublicKey(EVP_PKEY_RSA, nullptr, &p, key_len)); |
|
150 |
} else { |
||
151 |
✗✓ | 1756 |
CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSPKI); |
152 |
878 |
pkey->reset(d2i_PUBKEY(nullptr, &p, key_len)); |
|
153 |
} |
||
154 |
|||
155 |
✓✗ | 900 |
return *pkey ? ParseKeyResult::kParseKeyOk : |
156 |
1800 |
ParseKeyResult::kParseKeyFailed; |
|
157 |
} |
||
158 |
} |
||
159 |
|||
160 |
977 |
bool IsASN1Sequence(const unsigned char* data, size_t size, |
|
161 |
size_t* data_offset, size_t* data_size) { |
||
162 |
✓✗✗✓ |
977 |
if (size < 2 || data[0] != 0x30) |
163 |
return false; |
||
164 |
|||
165 |
✓✓ | 977 |
if (data[1] & 0x80) { |
166 |
// Long form. |
||
167 |
930 |
size_t n_bytes = data[1] & ~0x80; |
|
168 |
✓✗✗✓ |
930 |
if (n_bytes + 2 > size || n_bytes > sizeof(size_t)) |
169 |
return false; |
||
170 |
930 |
size_t length = 0; |
|
171 |
✓✓ | 2528 |
for (size_t i = 0; i < n_bytes; i++) |
172 |
1598 |
length = (length << 8) | data[i + 2]; |
|
173 |
930 |
*data_offset = 2 + n_bytes; |
|
174 |
930 |
*data_size = std::min(size - 2 - n_bytes, length); |
|
175 |
} else { |
||
176 |
// Short form. |
||
177 |
47 |
*data_offset = 2; |
|
178 |
47 |
*data_size = std::min<size_t>(size - 2, data[1]); |
|
179 |
} |
||
180 |
|||
181 |
977 |
return true; |
|
182 |
} |
||
183 |
|||
184 |
34 |
bool IsRSAPrivateKey(const unsigned char* data, size_t size) { |
|
185 |
// Both RSAPrivateKey and RSAPublicKey structures start with a SEQUENCE. |
||
186 |
size_t offset, len; |
||
187 |
✗✓ | 34 |
if (!IsASN1Sequence(data, size, &offset, &len)) |
188 |
return false; |
||
189 |
|||
190 |
// An RSAPrivateKey sequence always starts with a single-byte integer whose |
||
191 |
// value is either 0 or 1, whereas an RSAPublicKey starts with the modulus |
||
192 |
// (which is the product of two primes and therefore at least 4), so we can |
||
193 |
// decide the type of the structure based on the first three bytes of the |
||
194 |
// sequence. |
||
195 |
68 |
return len >= 3 && |
|
196 |
✓✗ | 34 |
data[offset] == 2 && |
197 |
✓✗✓✓ |
80 |
data[offset + 1] == 1 && |
198 |
✓✗ | 46 |
!(data[offset + 2] & 0xfe); |
199 |
} |
||
200 |
|||
201 |
943 |
bool IsEncryptedPrivateKeyInfo(const unsigned char* data, size_t size) { |
|
202 |
// Both PrivateKeyInfo and EncryptedPrivateKeyInfo start with a SEQUENCE. |
||
203 |
size_t offset, len; |
||
204 |
✗✓ | 943 |
if (!IsASN1Sequence(data, size, &offset, &len)) |
205 |
return false; |
||
206 |
|||
207 |
// A PrivateKeyInfo sequence always starts with an integer whereas an |
||
208 |
// EncryptedPrivateKeyInfo starts with an AlgorithmIdentifier. |
||
209 |
✓✗ | 1886 |
return len >= 1 && |
210 |
✓✓ | 1886 |
data[offset] != 2; |
211 |
} |
||
212 |
|||
213 |
1460 |
ParseKeyResult ParsePrivateKey(EVPKeyPointer* pkey, |
|
214 |
const PrivateKeyEncodingConfig& config, |
||
215 |
const char* key, |
||
216 |
size_t key_len) { |
||
217 |
1460 |
const ByteSource* passphrase = config.passphrase_.get(); |
|
218 |
|||
219 |
✓✓ | 1460 |
if (config.format_ == kKeyFormatPEM) { |
220 |
504 |
BIOPointer bio(BIO_new_mem_buf(key, key_len)); |
|
221 |
✗✓ | 504 |
if (!bio) |
222 |
return ParseKeyResult::kParseKeyFailed; |
||
223 |
|||
224 |
504 |
pkey->reset(PEM_read_bio_PrivateKey(bio.get(), |
|
225 |
nullptr, |
||
226 |
PasswordCallback, |
||
227 |
&passphrase)); |
||
228 |
} else { |
||
229 |
✗✓ | 956 |
CHECK_EQ(config.format_, kKeyFormatDER); |
230 |
|||
231 |
✓✓ | 1912 |
if (config.type_.ToChecked() == kKeyEncodingPKCS1) { |
232 |
13 |
const unsigned char* p = reinterpret_cast<const unsigned char*>(key); |
|
233 |
13 |
pkey->reset(d2i_PrivateKey(EVP_PKEY_RSA, nullptr, &p, key_len)); |
|
234 |
✓✗ | 1886 |
} else if (config.type_.ToChecked() == kKeyEncodingPKCS8) { |
235 |
943 |
BIOPointer bio(BIO_new_mem_buf(key, key_len)); |
|
236 |
✗✓ | 943 |
if (!bio) |
237 |
return ParseKeyResult::kParseKeyFailed; |
||
238 |
|||
239 |
✓✓ | 943 |
if (IsEncryptedPrivateKeyInfo( |
240 |
reinterpret_cast<const unsigned char*>(key), key_len)) { |
||
241 |
17 |
pkey->reset(d2i_PKCS8PrivateKey_bio(bio.get(), |
|
242 |
nullptr, |
||
243 |
PasswordCallback, |
||
244 |
&passphrase)); |
||
245 |
} else { |
||
246 |
1852 |
PKCS8Pointer p8inf(d2i_PKCS8_PRIV_KEY_INFO_bio(bio.get(), nullptr)); |
|
247 |
✓✗ | 926 |
if (p8inf) |
248 |
926 |
pkey->reset(EVP_PKCS82PKEY(p8inf.get())); |
|
249 |
} |
||
250 |
} else { |
||
251 |
CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSEC1); |
||
252 |
const unsigned char* p = reinterpret_cast<const unsigned char*>(key); |
||
253 |
pkey->reset(d2i_PrivateKey(EVP_PKEY_EC, nullptr, &p, key_len)); |
||
254 |
} |
||
255 |
} |
||
256 |
|||
257 |
// OpenSSL can fail to parse the key but still return a non-null pointer. |
||
258 |
1460 |
unsigned long err = ERR_peek_error(); // NOLINT(runtime/int) |
|
259 |
✓✓ | 1460 |
if (err != 0) |
260 |
21 |
pkey->reset(); |
|
261 |
|||
262 |
✓✓ | 1460 |
if (*pkey) |
263 |
1439 |
return ParseKeyResult::kParseKeyOk; |
|
264 |
✓✓✓✗ ✓✓ |
23 |
if (ERR_GET_LIB(err) == ERR_LIB_PEM && |
265 |
2 |
ERR_GET_REASON(err) == PEM_R_BAD_PASSWORD_READ) { |
|
266 |
✓✗ | 2 |
if (config.passphrase_.IsEmpty()) |
267 |
2 |
return ParseKeyResult::kParseKeyNeedPassphrase; |
|
268 |
} |
||
269 |
19 |
return ParseKeyResult::kParseKeyFailed; |
|
270 |
} |
||
271 |
|||
272 |
130 |
MaybeLocal<Value> BIOToStringOrBuffer( |
|
273 |
Environment* env, |
||
274 |
BIO* bio, |
||
275 |
PKFormatType format) { |
||
276 |
BUF_MEM* bptr; |
||
277 |
130 |
BIO_get_mem_ptr(bio, &bptr); |
|
278 |
✓✓ | 130 |
if (format == kKeyFormatPEM) { |
279 |
// PEM is an ASCII format, so we will return it as a string. |
||
280 |
156 |
return String::NewFromUtf8(env->isolate(), bptr->data, |
|
281 |
NewStringType::kNormal, |
||
282 |
156 |
bptr->length).FromMaybe(Local<Value>()); |
|
283 |
} else { |
||
284 |
✗✓ | 52 |
CHECK_EQ(format, kKeyFormatDER); |
285 |
// DER is binary, return it as a buffer. |
||
286 |
52 |
return Buffer::Copy(env, bptr->data, bptr->length) |
|
287 |
52 |
.FromMaybe(Local<Value>()); |
|
288 |
} |
||
289 |
} |
||
290 |
|||
291 |
|||
292 |
62 |
MaybeLocal<Value> WritePrivateKey( |
|
293 |
Environment* env, |
||
294 |
EVP_PKEY* pkey, |
||
295 |
const PrivateKeyEncodingConfig& config) { |
||
296 |
124 |
BIOPointer bio(BIO_new(BIO_s_mem())); |
|
297 |
✗✓ | 62 |
CHECK(bio); |
298 |
|||
299 |
// If an empty string was passed as the passphrase, the ByteSource might |
||
300 |
// contain a null pointer, which OpenSSL will ignore, causing it to invoke its |
||
301 |
// default passphrase callback, which would block the thread until the user |
||
302 |
// manually enters a passphrase. We could supply our own passphrase callback |
||
303 |
// to handle this special case, but it is easier to avoid passing a null |
||
304 |
// pointer to OpenSSL. |
||
305 |
62 |
char* pass = nullptr; |
|
306 |
62 |
size_t pass_len = 0; |
|
307 |
✓✓ | 62 |
if (!config.passphrase_.IsEmpty()) { |
308 |
12 |
pass = const_cast<char*>(config.passphrase_->get()); |
|
309 |
12 |
pass_len = config.passphrase_->size(); |
|
310 |
✓✓ | 12 |
if (pass == nullptr) { |
311 |
// OpenSSL will not actually dereference this pointer, so it can be any |
||
312 |
// non-null pointer. We cannot assert that directly, which is why we |
||
313 |
// intentionally use a pointer that will likely cause a segmentation fault |
||
314 |
// when dereferenced. |
||
315 |
✗✓ | 3 |
CHECK_EQ(pass_len, 0); |
316 |
3 |
pass = reinterpret_cast<char*>(-1); |
|
317 |
✗✓ | 3 |
CHECK_NE(pass, nullptr); |
318 |
} |
||
319 |
} |
||
320 |
|||
321 |
bool err; |
||
322 |
|||
323 |
62 |
PKEncodingType encoding_type = config.type_.ToChecked(); |
|
324 |
✓✓ | 62 |
if (encoding_type == kKeyEncodingPKCS1) { |
325 |
// PKCS#1 is only permitted for RSA keys. |
||
326 |
✗✓ | 12 |
CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_RSA); |
327 |
|||
328 |
24 |
RSAPointer rsa(EVP_PKEY_get1_RSA(pkey)); |
|
329 |
✓✓ | 12 |
if (config.format_ == kKeyFormatPEM) { |
330 |
// Encode PKCS#1 as PEM. |
||
331 |
11 |
err = PEM_write_bio_RSAPrivateKey( |
|
332 |
11 |
bio.get(), rsa.get(), |
|
333 |
11 |
config.cipher_, |
|
334 |
reinterpret_cast<unsigned char*>(pass), |
||
335 |
pass_len, |
||
336 |
nullptr, nullptr) != 1; |
||
337 |
} else { |
||
338 |
// Encode PKCS#1 as DER. This does not permit encryption. |
||
339 |
✗✓ | 1 |
CHECK_EQ(config.format_, kKeyFormatDER); |
340 |
✗✓ | 1 |
CHECK_NULL(config.cipher_); |
341 |
1 |
err = i2d_RSAPrivateKey_bio(bio.get(), rsa.get()) != 1; |
|
342 |
} |
||
343 |
✓✓ | 50 |
} else if (encoding_type == kKeyEncodingPKCS8) { |
344 |
✓✓ | 46 |
if (config.format_ == kKeyFormatPEM) { |
345 |
// Encode PKCS#8 as PEM. |
||
346 |
23 |
err = PEM_write_bio_PKCS8PrivateKey( |
|
347 |
bio.get(), pkey, |
||
348 |
23 |
config.cipher_, |
|
349 |
pass, |
||
350 |
pass_len, |
||
351 |
nullptr, nullptr) != 1; |
||
352 |
} else { |
||
353 |
// Encode PKCS#8 as DER. |
||
354 |
✗✓ | 23 |
CHECK_EQ(config.format_, kKeyFormatDER); |
355 |
23 |
err = i2d_PKCS8PrivateKey_bio( |
|
356 |
bio.get(), pkey, |
||
357 |
23 |
config.cipher_, |
|
358 |
pass, |
||
359 |
pass_len, |
||
360 |
nullptr, nullptr) != 1; |
||
361 |
} |
||
362 |
} else { |
||
363 |
✗✓ | 4 |
CHECK_EQ(encoding_type, kKeyEncodingSEC1); |
364 |
|||
365 |
// SEC1 is only permitted for EC keys. |
||
366 |
✗✓ | 4 |
CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_EC); |
367 |
|||
368 |
8 |
ECKeyPointer ec_key(EVP_PKEY_get1_EC_KEY(pkey)); |
|
369 |
✓✗ | 4 |
if (config.format_ == kKeyFormatPEM) { |
370 |
// Encode SEC1 as PEM. |
||
371 |
4 |
err = PEM_write_bio_ECPrivateKey( |
|
372 |
4 |
bio.get(), ec_key.get(), |
|
373 |
4 |
config.cipher_, |
|
374 |
reinterpret_cast<unsigned char*>(pass), |
||
375 |
pass_len, |
||
376 |
nullptr, nullptr) != 1; |
||
377 |
} else { |
||
378 |
// Encode SEC1 as DER. This does not permit encryption. |
||
379 |
CHECK_EQ(config.format_, kKeyFormatDER); |
||
380 |
CHECK_NULL(config.cipher_); |
||
381 |
err = i2d_ECPrivateKey_bio(bio.get(), ec_key.get()) != 1; |
||
382 |
} |
||
383 |
} |
||
384 |
|||
385 |
✗✓ | 62 |
if (err) { |
386 |
ThrowCryptoError(env, ERR_get_error(), "Failed to encode private key"); |
||
387 |
return MaybeLocal<Value>(); |
||
388 |
} |
||
389 |
62 |
return BIOToStringOrBuffer(env, bio.get(), config.format_); |
|
390 |
} |
||
391 |
|||
392 |
72 |
bool WritePublicKeyInner(EVP_PKEY* pkey, |
|
393 |
const BIOPointer& bio, |
||
394 |
const PublicKeyEncodingConfig& config) { |
||
395 |
✓✓ | 144 |
if (config.type_.ToChecked() == kKeyEncodingPKCS1) { |
396 |
// PKCS#1 is only valid for RSA keys. |
||
397 |
✗✓ | 13 |
CHECK_EQ(EVP_PKEY_id(pkey), EVP_PKEY_RSA); |
398 |
26 |
RSAPointer rsa(EVP_PKEY_get1_RSA(pkey)); |
|
399 |
✓✓ | 13 |
if (config.format_ == kKeyFormatPEM) { |
400 |
// Encode PKCS#1 as PEM. |
||
401 |
7 |
return PEM_write_bio_RSAPublicKey(bio.get(), rsa.get()) == 1; |
|
402 |
} else { |
||
403 |
// Encode PKCS#1 as DER. |
||
404 |
✗✓ | 6 |
CHECK_EQ(config.format_, kKeyFormatDER); |
405 |
6 |
return i2d_RSAPublicKey_bio(bio.get(), rsa.get()) == 1; |
|
406 |
} |
||
407 |
} else { |
||
408 |
✗✓ | 118 |
CHECK_EQ(config.type_.ToChecked(), kKeyEncodingSPKI); |
409 |
✓✓ | 59 |
if (config.format_ == kKeyFormatPEM) { |
410 |
// Encode SPKI as PEM. |
||
411 |
33 |
return PEM_write_bio_PUBKEY(bio.get(), pkey) == 1; |
|
412 |
} else { |
||
413 |
// Encode SPKI as DER. |
||
414 |
✗✓ | 26 |
CHECK_EQ(config.format_, kKeyFormatDER); |
415 |
26 |
return i2d_PUBKEY_bio(bio.get(), pkey) == 1; |
|
416 |
} |
||
417 |
} |
||
418 |
} |
||
419 |
|||
420 |
72 |
MaybeLocal<Value> WritePublicKey(Environment* env, |
|
421 |
EVP_PKEY* pkey, |
||
422 |
const PublicKeyEncodingConfig& config) { |
||
423 |
144 |
BIOPointer bio(BIO_new(BIO_s_mem())); |
|
424 |
✗✓ | 72 |
CHECK(bio); |
425 |
|||
426 |
✓✓ | 72 |
if (!WritePublicKeyInner(pkey, bio, config)) { |
427 |
4 |
ThrowCryptoError(env, ERR_get_error(), "Failed to encode public key"); |
|
428 |
4 |
return MaybeLocal<Value>(); |
|
429 |
} |
||
430 |
68 |
return BIOToStringOrBuffer(env, bio.get(), config.format_); |
|
431 |
} |
||
432 |
|||
433 |
291 |
Maybe<bool> ExportJWKSecretKey( |
|
434 |
Environment* env, |
||
435 |
std::shared_ptr<KeyObjectData> key, |
||
436 |
Local<Object> target) { |
||
437 |
✗✓ | 291 |
CHECK_EQ(key->GetKeyType(), kKeyTypeSecret); |
438 |
|||
439 |
Local<Value> error; |
||
440 |
Local<Value> raw; |
||
441 |
MaybeLocal<Value> key_data = |
||
442 |
StringBytes::Encode( |
||
443 |
env->isolate(), |
||
444 |
key->GetSymmetricKey(), |
||
445 |
key->GetSymmetricKeySize(), |
||
446 |
BASE64URL, |
||
447 |
291 |
&error); |
|
448 |
✗✓ | 291 |
if (key_data.IsEmpty()) { |
449 |
CHECK(!error.IsEmpty()); |
||
450 |
env->isolate()->ThrowException(error); |
||
451 |
return Nothing<bool>(); |
||
452 |
} |
||
453 |
✗✓ | 291 |
if (!key_data.ToLocal(&raw)) |
454 |
return Nothing<bool>(); |
||
455 |
|||
456 |
582 |
if (target->Set( |
|
457 |
env->context(), |
||
458 |
env->jwk_kty_string(), |
||
459 |
✓✗ | 1455 |
env->jwk_oct_string()).IsNothing() || |
460 |
291 |
target->Set( |
|
461 |
env->context(), |
||
462 |
env->jwk_k_string(), |
||
463 |
✗✓✗✓ |
1164 |
raw).IsNothing()) { |
464 |
return Nothing<bool>(); |
||
465 |
} |
||
466 |
|||
467 |
291 |
return Just(true); |
|
468 |
} |
||
469 |
|||
470 |
270 |
std::shared_ptr<KeyObjectData> ImportJWKSecretKey( |
|
471 |
Environment* env, |
||
472 |
Local<Object> jwk) { |
||
473 |
Local<Value> key; |
||
474 |
✓✗✗✓ |
1080 |
if (!jwk->Get(env->context(), env->jwk_k_string()).ToLocal(&key) || |
475 |
✗✓ | 540 |
!key->IsString()) { |
476 |
THROW_ERR_CRYPTO_INVALID_JWK(env, "Invalid JWK secret key format"); |
||
477 |
return std::shared_ptr<KeyObjectData>(); |
||
478 |
} |
||
479 |
|||
480 |
540 |
ByteSource key_data = ByteSource::FromEncodedString(env, key.As<String>()); |
|
481 |
✗✓ | 270 |
if (key_data.size() > INT_MAX) { |
482 |
THROW_ERR_CRYPTO_INVALID_KEYLEN(env); |
||
483 |
return std::shared_ptr<KeyObjectData>(); |
||
484 |
} |
||
485 |
|||
486 |
270 |
return KeyObjectData::CreateSecret(std::move(key_data)); |
|
487 |
} |
||
488 |
|||
489 |
650 |
Maybe<bool> ExportJWKAsymmetricKey( |
|
490 |
Environment* env, |
||
491 |
std::shared_ptr<KeyObjectData> key, |
||
492 |
Local<Object> target, |
||
493 |
bool handleRsaPss) { |
||
494 |
✓✓✓✓ ✓ |
650 |
switch (EVP_PKEY_id(key->GetAsymmetricKey().get())) { |
495 |
2 |
case EVP_PKEY_RSA_PSS: { |
|
496 |
✗✓ | 2 |
if (handleRsaPss) return ExportJWKRsaKey(env, key, target); |
497 |
2 |
break; |
|
498 |
} |
||
499 |
409 |
case EVP_PKEY_RSA: return ExportJWKRsaKey(env, key, target); |
|
500 |
398 |
case EVP_PKEY_EC: return ExportJWKEcKey(env, key, target).IsJust() ? |
|
501 |
✓✓ | 199 |
Just(true) : Nothing<bool>(); |
502 |
36 |
case EVP_PKEY_ED25519: |
|
503 |
// Fall through |
||
504 |
case EVP_PKEY_ED448: |
||
505 |
// Fall through |
||
506 |
case EVP_PKEY_X25519: |
||
507 |
// Fall through |
||
508 |
36 |
case EVP_PKEY_X448: return ExportJWKEdKey(env, key, target); |
|
509 |
} |
||
510 |
6 |
THROW_ERR_CRYPTO_JWK_UNSUPPORTED_KEY_TYPE(env); |
|
511 |
6 |
return Just(false); |
|
512 |
} |
||
513 |
|||
514 |
658 |
std::shared_ptr<KeyObjectData> ImportJWKAsymmetricKey( |
|
515 |
Environment* env, |
||
516 |
Local<Object> jwk, |
||
517 |
const char* kty, |
||
518 |
const FunctionCallbackInfo<Value>& args, |
||
519 |
unsigned int offset) { |
||
520 |
✓✓ | 658 |
if (strcmp(kty, "RSA") == 0) { |
521 |
502 |
return ImportJWKRsaKey(env, jwk, args, offset); |
|
522 |
✓✗ | 156 |
} else if (strcmp(kty, "EC") == 0) { |
523 |
156 |
return ImportJWKEcKey(env, jwk, args, offset); |
|
524 |
} |
||
525 |
|||
526 |
THROW_ERR_CRYPTO_INVALID_JWK(env, "%s is not a supported JWK key type", kty); |
||
527 |
return std::shared_ptr<KeyObjectData>(); |
||
528 |
} |
||
529 |
|||
530 |
1515 |
Maybe<bool> GetSecretKeyDetail( |
|
531 |
Environment* env, |
||
532 |
std::shared_ptr<KeyObjectData> key, |
||
533 |
Local<Object> target) { |
||
534 |
// For the secret key detail, all we care about is the length, |
||
535 |
// converted to bits. |
||
536 |
|||
537 |
1515 |
size_t length = key->GetSymmetricKeySize() * CHAR_BIT; |
|
538 |
return target->Set(env->context(), |
||
539 |
env->length_string(), |
||
540 |
4545 |
Number::New(env->isolate(), static_cast<double>(length))); |
|
541 |
} |
||
542 |
|||
543 |
2337 |
Maybe<bool> GetAsymmetricKeyDetail( |
|
544 |
Environment* env, |
||
545 |
std::shared_ptr<KeyObjectData> key, |
||
546 |
Local<Object> target) { |
||
547 |
✓✓✓✗ ✗ |
2337 |
switch (EVP_PKEY_id(key->GetAsymmetricKey().get())) { |
548 |
1691 |
case EVP_PKEY_RSA: |
|
549 |
// Fall through |
||
550 |
1691 |
case EVP_PKEY_RSA_PSS: return GetRsaKeyDetail(env, key, target); |
|
551 |
2 |
case EVP_PKEY_DSA: return GetDsaKeyDetail(env, key, target); |
|
552 |
644 |
case EVP_PKEY_EC: return GetEcKeyDetail(env, key, target); |
|
553 |
case EVP_PKEY_DH: return GetDhKeyDetail(env, key, target); |
||
554 |
} |
||
555 |
THROW_ERR_CRYPTO_INVALID_KEYTYPE(env); |
||
556 |
return Nothing<bool>(); |
||
557 |
} |
||
558 |
} // namespace |
||
559 |
|||
560 |
8698 |
ManagedEVPPKey::ManagedEVPPKey(EVPKeyPointer&& pkey) : pkey_(std::move(pkey)), |
|
561 |
4349 |
mutex_(std::make_shared<Mutex>()) {} |
|
562 |
|||
563 |
17262 |
ManagedEVPPKey::ManagedEVPPKey(const ManagedEVPPKey& that) { |
|
564 |
17262 |
*this = that; |
|
565 |
17262 |
} |
|
566 |
|||
567 |
22349 |
ManagedEVPPKey& ManagedEVPPKey::operator=(const ManagedEVPPKey& that) { |
|
568 |
22349 |
Mutex::ScopedLock lock(*that.mutex_); |
|
569 |
|||
570 |
22349 |
pkey_.reset(that.get()); |
|
571 |
|||
572 |
✓✓ | 22349 |
if (pkey_) |
573 |
22010 |
EVP_PKEY_up_ref(pkey_.get()); |
|
574 |
|||
575 |
22349 |
mutex_ = that.mutex_; |
|
576 |
|||
577 |
22349 |
return *this; |
|
578 |
} |
||
579 |
|||
580 |
7903 |
ManagedEVPPKey::operator bool() const { |
|
581 |
7903 |
return !!pkey_; |
|
582 |
} |
||
583 |
|||
584 |
45469 |
EVP_PKEY* ManagedEVPPKey::get() const { |
|
585 |
45469 |
return pkey_.get(); |
|
586 |
} |
||
587 |
|||
588 |
5843 |
Mutex* ManagedEVPPKey::mutex() const { |
|
589 |
5843 |
return mutex_.get(); |
|
590 |
} |
||
591 |
|||
592 |
void ManagedEVPPKey::MemoryInfo(MemoryTracker* tracker) const { |
||
593 |
tracker->TrackFieldWithSize("pkey", |
||
594 |
!pkey_ ? 0 : kSizeOf_EVP_PKEY + |
||
595 |
size_of_private_key() + |
||
596 |
size_of_public_key()); |
||
597 |
} |
||
598 |
|||
599 |
size_t ManagedEVPPKey::size_of_private_key() const { |
||
600 |
size_t len = 0; |
||
601 |
return (pkey_ && EVP_PKEY_get_raw_private_key( |
||
602 |
pkey_.get(), nullptr, &len) == 1) ? len : 0; |
||
603 |
} |
||
604 |
|||
605 |
size_t ManagedEVPPKey::size_of_public_key() const { |
||
606 |
size_t len = 0; |
||
607 |
return (pkey_ && EVP_PKEY_get_raw_public_key( |
||
608 |
pkey_.get(), nullptr, &len) == 1) ? len : 0; |
||
609 |
} |
||
610 |
|||
611 |
// This maps true to Just<bool>(true) and false to Nothing<bool>(). |
||
612 |
616 |
static inline Maybe<bool> Tristate(bool b) { |
|
613 |
✓✓ | 616 |
return b ? Just(true) : Nothing<bool>(); |
614 |
} |
||
615 |
|||
616 |
941 |
Maybe<bool> ExportJWKInner(Environment* env, |
|
617 |
std::shared_ptr<KeyObjectData> key, |
||
618 |
Local<Value> result, |
||
619 |
bool handleRsaPss) { |
||
620 |
✓✓✗ | 941 |
switch (key->GetKeyType()) { |
621 |
291 |
case kKeyTypeSecret: |
|
622 |
291 |
return ExportJWKSecretKey(env, key, result.As<Object>()); |
|
623 |
650 |
case kKeyTypePublic: |
|
624 |
// Fall through |
||
625 |
case kKeyTypePrivate: |
||
626 |
return ExportJWKAsymmetricKey( |
||
627 |
1300 |
env, key, result.As<Object>(), handleRsaPss); |
|
628 |
default: |
||
629 |
UNREACHABLE(); |
||
630 |
} |
||
631 |
} |
||
632 |
|||
633 |
321 |
Maybe<bool> ManagedEVPPKey::ToEncodedPublicKey( |
|
634 |
Environment* env, |
||
635 |
ManagedEVPPKey key, |
||
636 |
const PublicKeyEncodingConfig& config, |
||
637 |
Local<Value>* out) { |
||
638 |
✗✓ | 321 |
if (!key) return Nothing<bool>(); |
639 |
✓✓ | 321 |
if (config.output_key_object_) { |
640 |
// Note that this has the downside of containing sensitive data of the |
||
641 |
// private key. |
||
642 |
std::shared_ptr<KeyObjectData> data = |
||
643 |
290 |
KeyObjectData::CreateAsymmetric(kKeyTypePublic, std::move(key)); |
|
644 |
580 |
return Tristate(KeyObjectHandle::Create(env, data).ToLocal(out)); |
|
645 |
✓✓ | 31 |
} else if (config.format_ == kKeyFormatJWK) { |
646 |
std::shared_ptr<KeyObjectData> data = |
||
647 |
11 |
KeyObjectData::CreateAsymmetric(kKeyTypePublic, std::move(key)); |
|
648 |
11 |
*out = Object::New(env->isolate()); |
|
649 |
11 |
return ExportJWKInner(env, data, *out, false); |
|
650 |
} |
||
651 |
|||
652 |
40 |
return Tristate(WritePublicKey(env, key.get(), config).ToLocal(out)); |
|
653 |
} |
||
654 |
|||
655 |
316 |
Maybe<bool> ManagedEVPPKey::ToEncodedPrivateKey( |
|
656 |
Environment* env, |
||
657 |
ManagedEVPPKey key, |
||
658 |
const PrivateKeyEncodingConfig& config, |
||
659 |
Local<Value>* out) { |
||
660 |
✗✓ | 316 |
if (!key) return Nothing<bool>(); |
661 |
✓✓ | 316 |
if (config.output_key_object_) { |
662 |
std::shared_ptr<KeyObjectData> data = |
||
663 |
289 |
KeyObjectData::CreateAsymmetric(kKeyTypePrivate, std::move(key)); |
|
664 |
578 |
return Tristate(KeyObjectHandle::Create(env, data).ToLocal(out)); |
|
665 |
✓✓ | 27 |
} else if (config.format_ == kKeyFormatJWK) { |
666 |
std::shared_ptr<KeyObjectData> data = |
||
667 |
10 |
KeyObjectData::CreateAsymmetric(kKeyTypePrivate, std::move(key)); |
|
668 |
10 |
*out = Object::New(env->isolate()); |
|
669 |
10 |
return ExportJWKInner(env, data, *out, false); |
|
670 |
} |
||
671 |
|||
672 |
34 |
return Tristate(WritePrivateKey(env, key.get(), config).ToLocal(out)); |
|
673 |
} |
||
674 |
|||
675 |
NonCopyableMaybe<PrivateKeyEncodingConfig> |
||
676 |
3695 |
ManagedEVPPKey::GetPrivateKeyEncodingFromJs( |
|
677 |
const FunctionCallbackInfo<Value>& args, |
||
678 |
unsigned int* offset, |
||
679 |
KeyEncodingContext context) { |
||
680 |
3695 |
Environment* env = Environment::GetCurrent(args); |
|
681 |
|||
682 |
7390 |
PrivateKeyEncodingConfig result; |
|
683 |
3695 |
GetKeyFormatAndTypeFromJs(&result, args, offset, context); |
|
684 |
|||
685 |
✓✓ | 3695 |
if (result.output_key_object_) { |
686 |
✓✗ | 293 |
if (context != kKeyContextInput) |
687 |
293 |
(*offset)++; |
|
688 |
} else { |
||
689 |
3402 |
bool needs_passphrase = false; |
|
690 |
✓✓ | 3402 |
if (context != kKeyContextInput) { |
691 |
✓✗✓✓ |
225 |
if (args[*offset]->IsString()) { |
692 |
✓✗ | 26 |
Utf8Value cipher_name(env->isolate(), args[*offset]); |
693 |
13 |
result.cipher_ = EVP_get_cipherbyname(*cipher_name); |
|
694 |
✓✓ | 13 |
if (result.cipher_ == nullptr) { |
695 |
1 |
THROW_ERR_CRYPTO_UNKNOWN_CIPHER(env); |
|
696 |
1 |
return NonCopyableMaybe<PrivateKeyEncodingConfig>(); |
|
697 |
} |
||
698 |
12 |
needs_passphrase = true; |
|
699 |
} else { |
||
700 |
✓✗✗✓ |
186 |
CHECK(args[*offset]->IsNullOrUndefined()); |
701 |
62 |
result.cipher_ = nullptr; |
|
702 |
} |
||
703 |
74 |
(*offset)++; |
|
704 |
} |
||
705 |
|||
706 |
✓✗✓✓ |
6802 |
if (IsAnyByteSource(args[*offset])) { |
707 |
✓✓✗✓ |
95 |
CHECK_IMPLIES(context != kKeyContextInput, result.cipher_ != nullptr); |
708 |
✓✗ | 190 |
ArrayBufferOrViewContents<char> passphrase(args[*offset]); |
709 |
✗✓ | 95 |
if (UNLIKELY(!passphrase.CheckSizeInt32())) { |
710 |
THROW_ERR_OUT_OF_RANGE(env, "passphrase is too big"); |
||
711 |
return NonCopyableMaybe<PrivateKeyEncodingConfig>(); |
||
712 |
} |
||
713 |
190 |
result.passphrase_ = NonCopyableMaybe<ByteSource>( |
|
714 |
285 |
passphrase.ToNullTerminatedCopy()); |
|
715 |
} else { |
||
716 |
✓✗✓✗ ✗✓✗✓ |
9918 |
CHECK(args[*offset]->IsNullOrUndefined() && !needs_passphrase); |
717 |
} |
||
718 |
} |
||
719 |
|||
720 |
3694 |
(*offset)++; |
|
721 |
3694 |
return NonCopyableMaybe<PrivateKeyEncodingConfig>(std::move(result)); |
|
722 |
} |
||
723 |
|||
724 |
375 |
PublicKeyEncodingConfig ManagedEVPPKey::GetPublicKeyEncodingFromJs( |
|
725 |
const FunctionCallbackInfo<Value>& args, |
||
726 |
unsigned int* offset, |
||
727 |
KeyEncodingContext context) { |
||
728 |
375 |
PublicKeyEncodingConfig result; |
|
729 |
375 |
GetKeyFormatAndTypeFromJs(&result, args, offset, context); |
|
730 |
375 |
return result; |
|
731 |
} |
||
732 |
|||
733 |
1333 |
ManagedEVPPKey ManagedEVPPKey::GetPrivateKeyFromJs( |
|
734 |
const FunctionCallbackInfo<Value>& args, |
||
735 |
unsigned int* offset, |
||
736 |
bool allow_key_object) { |
||
737 |
✓✗✓✗ ✓✗✓✓ ✓✓ |
5332 |
if (args[*offset]->IsString() || IsAnyByteSource(args[*offset])) { |
738 |
1129 |
Environment* env = Environment::GetCurrent(args); |
|
739 |
✓✗ | 3387 |
ByteSource key = ByteSource::FromStringOrBuffer(env, args[(*offset)++]); |
740 |
NonCopyableMaybe<PrivateKeyEncodingConfig> config = |
||
741 |
2258 |
GetPrivateKeyEncodingFromJs(args, offset, kKeyContextInput); |
|
742 |
✗✓ | 1129 |
if (config.IsEmpty()) |
743 |
return ManagedEVPPKey(); |
||
744 |
|||
745 |
1129 |
EVPKeyPointer pkey; |
|
746 |
ParseKeyResult ret = |
||
747 |
1129 |
ParsePrivateKey(&pkey, config.Release(), key.get(), key.size()); |
|
748 |
1129 |
return GetParsedKey(env, std::move(pkey), ret, |
|
749 |
1129 |
"Failed to read private key"); |
|
750 |
} else { |
||
751 |
✓✗✓✗ ✗✓✗✓ |
408 |
CHECK(args[*offset]->IsObject() && allow_key_object); |
752 |
KeyObjectHandle* key; |
||
753 |
✓✗✗✓ |
612 |
ASSIGN_OR_RETURN_UNWRAP(&key, args[*offset].As<Object>(), ManagedEVPPKey()); |
754 |
✗✓ | 204 |
CHECK_EQ(key->Data()->GetKeyType(), kKeyTypePrivate); |
755 |
204 |
(*offset) += 4; |
|
756 |
204 |
return key->Data()->GetAsymmetricKey(); |
|
757 |
} |
||
758 |
} |
||
759 |
|||
760 |
2824 |
ManagedEVPPKey ManagedEVPPKey::GetPublicOrPrivateKeyFromJs( |
|
761 |
const FunctionCallbackInfo<Value>& args, |
||
762 |
unsigned int* offset) { |
||
763 |
✓✗✓✓ |
5648 |
if (IsAnyByteSource(args[*offset])) { |
764 |
2198 |
Environment* env = Environment::GetCurrent(args); |
|
765 |
✓✗ | 6594 |
ArrayBufferOrViewContents<char> data(args[(*offset)++]); |
766 |
✗✓ | 2198 |
if (UNLIKELY(!data.CheckSizeInt32())) { |
767 |
THROW_ERR_OUT_OF_RANGE(env, "keyData is too big"); |
||
768 |
return ManagedEVPPKey(); |
||
769 |
} |
||
770 |
NonCopyableMaybe<PrivateKeyEncodingConfig> config_ = |
||
771 |
4396 |
GetPrivateKeyEncodingFromJs(args, offset, kKeyContextInput); |
|
772 |
✗✓ | 2198 |
if (config_.IsEmpty()) |
773 |
return ManagedEVPPKey(); |
||
774 |
|||
775 |
ParseKeyResult ret; |
||
776 |
4396 |
PrivateKeyEncodingConfig config = config_.Release(); |
|
777 |
2198 |
EVPKeyPointer pkey; |
|
778 |
✓✓ | 2198 |
if (config.format_ == kKeyFormatPEM) { |
779 |
// For PEM, we can easily determine whether it is a public or private key |
||
780 |
// by looking for the respective PEM tags. |
||
781 |
1229 |
ret = ParsePublicKeyPEM(&pkey, data.data(), data.size()); |
|
782 |
✓✓ | 1229 |
if (ret == ParseKeyResult::kParseKeyNotRecognized) { |
783 |
262 |
ret = ParsePrivateKey(&pkey, config, data.data(), data.size()); |
|
784 |
} |
||
785 |
} else { |
||
786 |
// For DER, the type determines how to parse it. SPKI, PKCS#8 and SEC1 are |
||
787 |
// easy, but PKCS#1 can be a public key or a private key. |
||
788 |
bool is_public; |
||
789 |
✓✓✓✗ |
969 |
switch (config.type_.ToChecked()) { |
790 |
34 |
case kKeyEncodingPKCS1: |
|
791 |
68 |
is_public = !IsRSAPrivateKey( |
|
792 |
34 |
reinterpret_cast<const unsigned char*>(data.data()), data.size()); |
|
793 |
34 |
break; |
|
794 |
878 |
case kKeyEncodingSPKI: |
|
795 |
878 |
is_public = true; |
|
796 |
878 |
break; |
|
797 |
57 |
case kKeyEncodingPKCS8: |
|
798 |
case kKeyEncodingSEC1: |
||
799 |
57 |
is_public = false; |
|
800 |
57 |
break; |
|
801 |
default: |
||
802 |
UNREACHABLE("Invalid key encoding type"); |
||
803 |
} |
||
804 |
|||
805 |
✓✓ | 969 |
if (is_public) { |
806 |
900 |
ret = ParsePublicKey(&pkey, config, data.data(), data.size()); |
|
807 |
} else { |
||
808 |
69 |
ret = ParsePrivateKey(&pkey, config, data.data(), data.size()); |
|
809 |
} |
||
810 |
} |
||
811 |
|||
812 |
return ManagedEVPPKey::GetParsedKey( |
||
813 |
2198 |
env, std::move(pkey), ret, "Failed to read asymmetric key"); |
|
814 |
} else { |
||
815 |
✓✗✗✓ |
1252 |
CHECK(args[*offset]->IsObject()); |
816 |
✓✗ | 1878 |
KeyObjectHandle* key = Unwrap<KeyObjectHandle>(args[*offset].As<Object>()); |
817 |
✗✓ | 626 |
CHECK_NOT_NULL(key); |
818 |
✗✓ | 626 |
CHECK_NE(key->Data()->GetKeyType(), kKeyTypeSecret); |
819 |
626 |
(*offset) += 4; |
|
820 |
626 |
return key->Data()->GetAsymmetricKey(); |
|
821 |
} |
||
822 |
} |
||
823 |
|||
824 |
3327 |
ManagedEVPPKey ManagedEVPPKey::GetParsedKey(Environment* env, |
|
825 |
EVPKeyPointer&& pkey, |
||
826 |
ParseKeyResult ret, |
||
827 |
const char* default_msg) { |
||
828 |
✓✓✓ | 3327 |
switch (ret) { |
829 |
3306 |
case ParseKeyResult::kParseKeyOk: |
|
830 |
✗✓ | 3306 |
CHECK(pkey); |
831 |
3306 |
break; |
|
832 |
2 |
case ParseKeyResult::kParseKeyNeedPassphrase: |
|
833 |
2 |
THROW_ERR_MISSING_PASSPHRASE(env, |
|
834 |
"Passphrase required for encrypted key"); |
||
835 |
2 |
break; |
|
836 |
19 |
default: |
|
837 |
19 |
ThrowCryptoError(env, ERR_get_error(), default_msg); |
|
838 |
} |
||
839 |
|||
840 |
3327 |
return ManagedEVPPKey(std::move(pkey)); |
|
841 |
} |
||
842 |
|||
843 |
1813 |
KeyObjectData::KeyObjectData( |
|
844 |
1813 |
ByteSource symmetric_key) |
|
845 |
: key_type_(KeyType::kKeyTypeSecret), |
||
846 |
1813 |
symmetric_key_(std::move(symmetric_key)), |
|
847 |
1813 |
symmetric_key_len_(symmetric_key_.size()), |
|
848 |
3626 |
asymmetric_key_() {} |
|
849 |
|||
850 |
3109 |
KeyObjectData::KeyObjectData( |
|
851 |
KeyType type, |
||
852 |
3109 |
const ManagedEVPPKey& pkey) |
|
853 |
: key_type_(type), |
||
854 |
symmetric_key_(), |
||
855 |
symmetric_key_len_(0), |
||
856 |
3109 |
asymmetric_key_{pkey} {} |
|
857 |
|||
858 |
void KeyObjectData::MemoryInfo(MemoryTracker* tracker) const { |
||
859 |
switch (GetKeyType()) { |
||
860 |
case kKeyTypeSecret: |
||
861 |
tracker->TrackFieldWithSize("symmetric_key", symmetric_key_.size()); |
||
862 |
break; |
||
863 |
case kKeyTypePrivate: |
||
864 |
// Fall through |
||
865 |
case kKeyTypePublic: |
||
866 |
tracker->TrackFieldWithSize("key", asymmetric_key_); |
||
867 |
break; |
||
868 |
default: |
||
869 |
UNREACHABLE(); |
||
870 |
} |
||
871 |
} |
||
872 |
|||
873 |
1813 |
std::shared_ptr<KeyObjectData> KeyObjectData::CreateSecret(ByteSource key) { |
|
874 |
✗✓ | 1813 |
CHECK(key); |
875 |
1813 |
return std::shared_ptr<KeyObjectData>(new KeyObjectData(std::move(key))); |
|
876 |
} |
||
877 |
|||
878 |
3109 |
std::shared_ptr<KeyObjectData> KeyObjectData::CreateAsymmetric( |
|
879 |
KeyType key_type, |
||
880 |
const ManagedEVPPKey& pkey) { |
||
881 |
✗✓ | 3109 |
CHECK(pkey); |
882 |
3109 |
return std::shared_ptr<KeyObjectData>(new KeyObjectData(key_type, pkey)); |
|
883 |
} |
||
884 |
|||
885 |
11530 |
KeyType KeyObjectData::GetKeyType() const { |
|
886 |
11530 |
return key_type_; |
|
887 |
} |
||
888 |
|||
889 |
10540 |
ManagedEVPPKey KeyObjectData::GetAsymmetricKey() const { |
|
890 |
✗✓ | 10540 |
CHECK_NE(key_type_, kKeyTypeSecret); |
891 |
10540 |
return asymmetric_key_; |
|
892 |
} |
||
893 |
|||
894 |
2561 |
const char* KeyObjectData::GetSymmetricKey() const { |
|
895 |
✗✓ | 2561 |
CHECK_EQ(key_type_, kKeyTypeSecret); |
896 |
2561 |
return symmetric_key_.get(); |
|
897 |
} |
||
898 |
|||
899 |
3843 |
size_t KeyObjectData::GetSymmetricKeySize() const { |
|
900 |
✗✓ | 3843 |
CHECK_EQ(key_type_, kKeyTypeSecret); |
901 |
3843 |
return symmetric_key_len_; |
|
902 |
} |
||
903 |
|||
904 |
1623 |
v8::Local<v8::Function> KeyObjectHandle::Initialize(Environment* env) { |
|
905 |
1623 |
Local<Function> templ = env->crypto_key_object_handle_constructor(); |
|
906 |
✓✓ | 1623 |
if (!templ.IsEmpty()) { |
907 |
769 |
return templ; |
|
908 |
} |
||
909 |
854 |
Local<FunctionTemplate> t = env->NewFunctionTemplate(New); |
|
910 |
1708 |
t->InstanceTemplate()->SetInternalFieldCount( |
|
911 |
KeyObjectHandle::kInternalFieldCount); |
||
912 |
854 |
t->Inherit(BaseObject::GetConstructorTemplate(env)); |
|
913 |
|||
914 |
854 |
env->SetProtoMethod(t, "init", Init); |
|
915 |
854 |
env->SetProtoMethodNoSideEffect(t, "getSymmetricKeySize", |
|
916 |
GetSymmetricKeySize); |
||
917 |
854 |
env->SetProtoMethodNoSideEffect(t, "getAsymmetricKeyType", |
|
918 |
GetAsymmetricKeyType); |
||
919 |
854 |
env->SetProtoMethod(t, "export", Export); |
|
920 |
854 |
env->SetProtoMethod(t, "exportJwk", ExportJWK); |
|
921 |
854 |
env->SetProtoMethod(t, "initECRaw", InitECRaw); |
|
922 |
854 |
env->SetProtoMethod(t, "initEDRaw", InitEDRaw); |
|
923 |
854 |
env->SetProtoMethod(t, "initJwk", InitJWK); |
|
924 |
854 |
env->SetProtoMethod(t, "keyDetail", GetKeyDetail); |
|
925 |
854 |
env->SetProtoMethod(t, "equals", Equals); |
|
926 |
|||
927 |
854 |
auto function = t->GetFunction(env->context()).ToLocalChecked(); |
|
928 |
854 |
env->set_crypto_key_object_handle_constructor(function); |
|
929 |
854 |
return function; |
|
930 |
} |
||
931 |
|||
932 |
5205 |
void KeyObjectHandle::RegisterExternalReferences( |
|
933 |
ExternalReferenceRegistry* registry) { |
||
934 |
5205 |
registry->Register(New); |
|
935 |
5205 |
registry->Register(Init); |
|
936 |
5205 |
registry->Register(GetSymmetricKeySize); |
|
937 |
5205 |
registry->Register(GetAsymmetricKeyType); |
|
938 |
5205 |
registry->Register(Export); |
|
939 |
5205 |
registry->Register(ExportJWK); |
|
940 |
5205 |
registry->Register(InitECRaw); |
|
941 |
5205 |
registry->Register(InitEDRaw); |
|
942 |
5205 |
registry->Register(InitJWK); |
|
943 |
5205 |
registry->Register(GetKeyDetail); |
|
944 |
5205 |
registry->Register(Equals); |
|
945 |
5205 |
} |
|
946 |
|||
947 |
769 |
MaybeLocal<Object> KeyObjectHandle::Create( |
|
948 |
Environment* env, |
||
949 |
std::shared_ptr<KeyObjectData> data) { |
||
950 |
Local<Object> obj; |
||
951 |
769 |
Local<Function> ctor = KeyObjectHandle::Initialize(env); |
|
952 |
✗✓ | 1538 |
CHECK(!env->crypto_key_object_handle_constructor().IsEmpty()); |
953 |
✗✓ | 1538 |
if (!ctor->NewInstance(env->context(), 0, nullptr).ToLocal(&obj)) |
954 |
return MaybeLocal<Object>(); |
||
955 |
|||
956 |
769 |
KeyObjectHandle* key = Unwrap<KeyObjectHandle>(obj); |
|
957 |
✗✓ | 769 |
CHECK_NOT_NULL(key); |
958 |
769 |
key->data_ = data; |
|
959 |
769 |
return obj; |
|
960 |
} |
||
961 |
|||
962 |
15047 |
const std::shared_ptr<KeyObjectData>& KeyObjectHandle::Data() { |
|
963 |
15047 |
return data_; |
|
964 |
} |
||
965 |
|||
966 |
4914 |
void KeyObjectHandle::New(const FunctionCallbackInfo<Value>& args) { |
|
967 |
✗✓ | 4914 |
CHECK(args.IsConstructCall()); |
968 |
4914 |
Environment* env = Environment::GetCurrent(args); |
|
969 |
4914 |
new KeyObjectHandle(env, args.This()); |
|
970 |
4914 |
} |
|
971 |
|||
972 |
4914 |
KeyObjectHandle::KeyObjectHandle(Environment* env, |
|
973 |
4914 |
Local<Object> wrap) |
|
974 |
4914 |
: BaseObject(env, wrap) { |
|
975 |
4914 |
MakeWeak(); |
|
976 |
4914 |
} |
|
977 |
|||
978 |
3177 |
void KeyObjectHandle::Init(const FunctionCallbackInfo<Value>& args) { |
|
979 |
KeyObjectHandle* key; |
||
980 |
✗✓ | 3182 |
ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder()); |
981 |
3177 |
MarkPopErrorOnReturn mark_pop_error_on_return; |
|
982 |
|||
983 |
✗✓ | 3177 |
CHECK(args[0]->IsInt32()); |
984 |
6354 |
KeyType type = static_cast<KeyType>(args[0].As<Uint32>()->Value()); |
|
985 |
|||
986 |
unsigned int offset; |
||
987 |
3177 |
ManagedEVPPKey pkey; |
|
988 |
|||
989 |
✓✓✓✗ |
3177 |
switch (type) { |
990 |
1363 |
case kKeyTypeSecret: { |
|
991 |
✗✓ | 1363 |
CHECK_EQ(args.Length(), 2); |
992 |
2726 |
ArrayBufferOrViewContents<char> buf(args[1]); |
|
993 |
1363 |
key->data_ = KeyObjectData::CreateSecret(buf.ToCopy()); |
|
994 |
1363 |
break; |
|
995 |
} |
||
996 |
895 |
case kKeyTypePublic: { |
|
997 |
✗✓ | 895 |
CHECK_EQ(args.Length(), 5); |
998 |
|||
999 |
895 |
offset = 1; |
|
1000 |
895 |
pkey = ManagedEVPPKey::GetPublicOrPrivateKeyFromJs(args, &offset); |
|
1001 |
✗✓ | 895 |
if (!pkey) |
1002 |
return; |
||
1003 |
895 |
key->data_ = KeyObjectData::CreateAsymmetric(type, pkey); |
|
1004 |
895 |
break; |
|
1005 |
} |
||
1006 |
919 |
case kKeyTypePrivate: { |
|
1007 |
✗✓ | 919 |
CHECK_EQ(args.Length(), 5); |
1008 |
|||
1009 |
919 |
offset = 1; |
|
1010 |
919 |
pkey = ManagedEVPPKey::GetPrivateKeyFromJs(args, &offset, false); |
|
1011 |
✓✓ | 919 |
if (!pkey) |
1012 |
5 |
return; |
|
1013 |
914 |
key->data_ = KeyObjectData::CreateAsymmetric(type, pkey); |
|
1014 |
914 |
break; |
|
1015 |
} |
||
1016 |
default: |
||
1017 |
UNREACHABLE(); |
||
1018 |
} |
||
1019 |
} |
||
1020 |
|||
1021 |
928 |
void KeyObjectHandle::InitJWK(const FunctionCallbackInfo<Value>& args) { |
|
1022 |
928 |
Environment* env = Environment::GetCurrent(args); |
|
1023 |
KeyObjectHandle* key; |
||
1024 |
✗✓ | 928 |
ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder()); |
1025 |
928 |
MarkPopErrorOnReturn mark_pop_error_on_return; |
|
1026 |
|||
1027 |
// The argument must be a JavaScript object that we will inspect |
||
1028 |
// to get the JWK properties from. |
||
1029 |
✗✓ | 928 |
CHECK(args[0]->IsObject()); |
1030 |
|||
1031 |
// Step one, Secret key or not? |
||
1032 |
1856 |
Local<Object> input = args[0].As<Object>(); |
|
1033 |
|||
1034 |
Local<Value> kty; |
||
1035 |
✓✗✗✓ |
3712 |
if (!input->Get(env->context(), env->jwk_kty_string()).ToLocal(&kty) || |
1036 |
✗✓ | 1856 |
!kty->IsString()) { |
1037 |
return THROW_ERR_CRYPTO_INVALID_JWK(env); |
||
1038 |
} |
||
1039 |
|||
1040 |
928 |
Utf8Value kty_string(env->isolate(), kty); |
|
1041 |
|||
1042 |
✓✓ | 928 |
if (strcmp(*kty_string, "oct") == 0) { |
1043 |
// Secret key |
||
1044 |
270 |
key->data_ = ImportJWKSecretKey(env, input); |
|
1045 |
✗✓ | 270 |
if (!key->data_) { |
1046 |
// ImportJWKSecretKey is responsible for throwing an appropriate error |
||
1047 |
return; |
||
1048 |
} |
||
1049 |
} else { |
||
1050 |
658 |
key->data_ = ImportJWKAsymmetricKey(env, input, *kty_string, args, 1); |
|
1051 |
✗✓ | 658 |
if (!key->data_) { |
1052 |
// ImportJWKAsymmetricKey is responsible for throwing an appropriate error |
||
1053 |
return; |
||
1054 |
} |
||
1055 |
} |
||
1056 |
|||
1057 |
1856 |
args.GetReturnValue().Set(key->data_->GetKeyType()); |
|
1058 |
} |
||
1059 |
|||
1060 |
void KeyObjectHandle::InitECRaw(const FunctionCallbackInfo<Value>& args) { |
||
1061 |
Environment* env = Environment::GetCurrent(args); |
||
1062 |
KeyObjectHandle* key; |
||
1063 |
ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder()); |
||
1064 |
|||
1065 |
CHECK(args[0]->IsString()); |
||
1066 |
Utf8Value name(env->isolate(), args[0]); |
||
1067 |
|||
1068 |
MarkPopErrorOnReturn mark_pop_error_on_return; |
||
1069 |
|||
1070 |
int id = OBJ_txt2nid(*name); |
||
1071 |
ECKeyPointer eckey(EC_KEY_new_by_curve_name(id)); |
||
1072 |
if (!eckey) |
||
1073 |
return args.GetReturnValue().Set(false); |
||
1074 |
|||
1075 |
const EC_GROUP* group = EC_KEY_get0_group(eckey.get()); |
||
1076 |
ECPointPointer pub(ECDH::BufferToPoint(env, group, args[1])); |
||
1077 |
|||
1078 |
if (!pub || |
||
1079 |
!eckey || |
||
1080 |
!EC_KEY_set_public_key(eckey.get(), pub.get())) { |
||
1081 |
return args.GetReturnValue().Set(false); |
||
1082 |
} |
||
1083 |
|||
1084 |
EVPKeyPointer pkey(EVP_PKEY_new()); |
||
1085 |
if (!EVP_PKEY_assign_EC_KEY(pkey.get(), eckey.get())) |
||
1086 |
args.GetReturnValue().Set(false); |
||
1087 |
|||
1088 |
eckey.release(); // Release ownership of the key |
||
1089 |
|||
1090 |
key->data_ = |
||
1091 |
KeyObjectData::CreateAsymmetric( |
||
1092 |
kKeyTypePublic, |
||
1093 |
ManagedEVPPKey(std::move(pkey))); |
||
1094 |
|||
1095 |
args.GetReturnValue().Set(true); |
||
1096 |
} |
||
1097 |
|||
1098 |
40 |
void KeyObjectHandle::InitEDRaw(const FunctionCallbackInfo<Value>& args) { |
|
1099 |
40 |
Environment* env = Environment::GetCurrent(args); |
|
1100 |
KeyObjectHandle* key; |
||
1101 |
✗✓ | 40 |
ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder()); |
1102 |
|||
1103 |
✗✓ | 80 |
CHECK(args[0]->IsString()); |
1104 |
40 |
Utf8Value name(env->isolate(), args[0]); |
|
1105 |
|||
1106 |
40 |
ArrayBufferOrViewContents<unsigned char> key_data(args[1]); |
|
1107 |
80 |
KeyType type = static_cast<KeyType>(args[2].As<Int32>()->Value()); |
|
1108 |
|||
1109 |
40 |
MarkPopErrorOnReturn mark_pop_error_on_return; |
|
1110 |
|||
1111 |
typedef EVP_PKEY* (*new_key_fn)(int, ENGINE*, const unsigned char*, size_t); |
||
1112 |
40 |
new_key_fn fn = type == kKeyTypePrivate |
|
1113 |
✓✓ | 40 |
? EVP_PKEY_new_raw_private_key |
1114 |
: EVP_PKEY_new_raw_public_key; |
||
1115 |
|||
1116 |
40 |
int id = GetOKPCurveFromName(*name); |
|
1117 |
|||
1118 |
✓✗ | 40 |
switch (id) { |
1119 |
40 |
case EVP_PKEY_X25519: |
|
1120 |
case EVP_PKEY_X448: |
||
1121 |
case EVP_PKEY_ED25519: |
||
1122 |
case EVP_PKEY_ED448: { |
||
1123 |
40 |
EVPKeyPointer pkey(fn(id, nullptr, key_data.data(), key_data.size())); |
|
1124 |
✗✓ | 40 |
if (!pkey) |
1125 |
return args.GetReturnValue().Set(false); |
||
1126 |
40 |
key->data_ = |
|
1127 |
80 |
KeyObjectData::CreateAsymmetric( |
|
1128 |
type, |
||
1129 |
120 |
ManagedEVPPKey(std::move(pkey))); |
|
1130 |
✗✓ | 40 |
CHECK(key->data_); |
1131 |
40 |
break; |
|
1132 |
} |
||
1133 |
default: |
||
1134 |
UNREACHABLE(); |
||
1135 |
} |
||
1136 |
|||
1137 |
✓✗ | 80 |
args.GetReturnValue().Set(true); |
1138 |
} |
||
1139 |
|||
1140 |
11 |
void KeyObjectHandle::Equals(const FunctionCallbackInfo<Value>& args) { |
|
1141 |
KeyObjectHandle* self_handle; |
||
1142 |
KeyObjectHandle* arg_handle; |
||
1143 |
✗✓ | 11 |
ASSIGN_OR_RETURN_UNWRAP(&self_handle, args.Holder()); |
1144 |
✗✓ | 22 |
ASSIGN_OR_RETURN_UNWRAP(&arg_handle, args[0].As<Object>()); |
1145 |
11 |
std::shared_ptr<KeyObjectData> key = self_handle->Data(); |
|
1146 |
11 |
std::shared_ptr<KeyObjectData> key2 = arg_handle->Data(); |
|
1147 |
|||
1148 |
11 |
KeyType key_type = key->GetKeyType(); |
|
1149 |
✗✓ | 11 |
CHECK_EQ(key_type, key2->GetKeyType()); |
1150 |
|||
1151 |
bool ret; |
||
1152 |
✓✓✗ | 11 |
switch (key_type) { |
1153 |
3 |
case kKeyTypeSecret: { |
|
1154 |
3 |
size_t size = key->GetSymmetricKeySize(); |
|
1155 |
✓✗ | 3 |
if (size == key2->GetSymmetricKeySize()) { |
1156 |
3 |
ret = CRYPTO_memcmp( |
|
1157 |
3 |
key->GetSymmetricKey(), |
|
1158 |
3 |
key2->GetSymmetricKey(), |
|
1159 |
size) == 0; |
||
1160 |
} else { |
||
1161 |
ret = false; |
||
1162 |
} |
||
1163 |
3 |
break; |
|
1164 |
} |
||
1165 |
8 |
case kKeyTypePublic: |
|
1166 |
case kKeyTypePrivate: { |
||
1167 |
8 |
EVP_PKEY* pkey = key->GetAsymmetricKey().get(); |
|
1168 |
8 |
EVP_PKEY* pkey2 = key2->GetAsymmetricKey().get(); |
|
1169 |
#if OPENSSL_VERSION_MAJOR >= 3 |
||
1170 |
8 |
int ok = EVP_PKEY_eq(pkey, pkey2); |
|
1171 |
#else |
||
1172 |
int ok = EVP_PKEY_cmp(pkey, pkey2); |
||
1173 |
#endif |
||
1174 |
✗✓ | 8 |
if (ok == -2) { |
1175 |
Environment* env = Environment::GetCurrent(args); |
||
1176 |
return THROW_ERR_CRYPTO_UNSUPPORTED_OPERATION(env); |
||
1177 |
} |
||
1178 |
8 |
ret = ok == 1; |
|
1179 |
8 |
break; |
|
1180 |
} |
||
1181 |
default: |
||
1182 |
UNREACHABLE("unsupported key type"); |
||
1183 |
} |
||
1184 |
|||
1185 |
✓✓ | 22 |
args.GetReturnValue().Set(ret); |
1186 |
} |
||
1187 |
|||
1188 |
3852 |
void KeyObjectHandle::GetKeyDetail(const FunctionCallbackInfo<Value>& args) { |
|
1189 |
3852 |
Environment* env = Environment::GetCurrent(args); |
|
1190 |
KeyObjectHandle* key; |
||
1191 |
✗✓ | 3852 |
ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder()); |
1192 |
|||
1193 |
✗✓ | 3852 |
CHECK(args[0]->IsObject()); |
1194 |
|||
1195 |
3852 |
std::shared_ptr<KeyObjectData> data = key->Data(); |
|
1196 |
|||
1197 |
✓✓✗ | 3852 |
switch (data->GetKeyType()) { |
1198 |
✓✗ | 1515 |
case kKeyTypeSecret: |
1199 |
✗✓ | 4545 |
if (GetSecretKeyDetail(env, data, args[0].As<Object>()).IsNothing()) |
1200 |
return; |
||
1201 |
1515 |
break; |
|
1202 |
✓✗ | 2337 |
case kKeyTypePublic: |
1203 |
// Fall through |
||
1204 |
case kKeyTypePrivate: |
||
1205 |
✗✓ | 7011 |
if (GetAsymmetricKeyDetail(env, data, args[0].As<Object>()).IsNothing()) |
1206 |
return; |
||
1207 |
2337 |
break; |
|
1208 |
default: |
||
1209 |
UNREACHABLE(); |
||
1210 |
} |
||
1211 |
|||
1212 |
✓✗ | 7704 |
args.GetReturnValue().Set(args[0]); |
1213 |
} |
||
1214 |
|||
1215 |
2540 |
Local<Value> KeyObjectHandle::GetAsymmetricKeyType() const { |
|
1216 |
5080 |
const ManagedEVPPKey& key = data_->GetAsymmetricKey(); |
|
1217 |
✓✓✓✓ ✓✓✓✓ ✓✗ |
2540 |
switch (EVP_PKEY_id(key.get())) { |
1218 |
1712 |
case EVP_PKEY_RSA: |
|
1219 |
3424 |
return env()->crypto_rsa_string(); |
|
1220 |
22 |
case EVP_PKEY_RSA_PSS: |
|
1221 |
44 |
return env()->crypto_rsa_pss_string(); |
|
1222 |
10 |
case EVP_PKEY_DSA: |
|
1223 |
20 |
return env()->crypto_dsa_string(); |
|
1224 |
18 |
case EVP_PKEY_DH: |
|
1225 |
36 |
return env()->crypto_dh_string(); |
|
1226 |
664 |
case EVP_PKEY_EC: |
|
1227 |
1328 |
return env()->crypto_ec_string(); |
|
1228 |
29 |
case EVP_PKEY_ED25519: |
|
1229 |
58 |
return env()->crypto_ed25519_string(); |
|
1230 |
29 |
case EVP_PKEY_ED448: |
|
1231 |
58 |
return env()->crypto_ed448_string(); |
|
1232 |
28 |
case EVP_PKEY_X25519: |
|
1233 |
56 |
return env()->crypto_x25519_string(); |
|
1234 |
28 |
case EVP_PKEY_X448: |
|
1235 |
56 |
return env()->crypto_x448_string(); |
|
1236 |
default: |
||
1237 |
return Undefined(env()->isolate()); |
||
1238 |
} |
||
1239 |
} |
||
1240 |
|||
1241 |
2540 |
void KeyObjectHandle::GetAsymmetricKeyType( |
|
1242 |
const FunctionCallbackInfo<Value>& args) { |
||
1243 |
KeyObjectHandle* key; |
||
1244 |
✗✓ | 2540 |
ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder()); |
1245 |
|||
1246 |
5080 |
args.GetReturnValue().Set(key->GetAsymmetricKeyType()); |
|
1247 |
} |
||
1248 |
|||
1249 |
3 |
void KeyObjectHandle::GetSymmetricKeySize( |
|
1250 |
const FunctionCallbackInfo<Value>& args) { |
||
1251 |
KeyObjectHandle* key; |
||
1252 |
✗✓ | 3 |
ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder()); |
1253 |
✓✗ | 6 |
args.GetReturnValue().Set( |
1254 |
3 |
static_cast<uint32_t>(key->Data()->GetSymmetricKeySize())); |
|
1255 |
} |
||
1256 |
|||
1257 |
764 |
void KeyObjectHandle::Export(const FunctionCallbackInfo<Value>& args) { |
|
1258 |
KeyObjectHandle* key; |
||
1259 |
✗✓ | 764 |
ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder()); |
1260 |
|||
1261 |
✓✓ | 764 |
KeyType type = key->Data()->GetKeyType(); |
1262 |
|||
1263 |
MaybeLocal<Value> result; |
||
1264 |
✓✓ | 764 |
if (type == kKeyTypeSecret) { |
1265 |
667 |
result = key->ExportSecretKey(); |
|
1266 |
✓✓ | 97 |
} else if (type == kKeyTypePublic) { |
1267 |
52 |
unsigned int offset = 0; |
|
1268 |
PublicKeyEncodingConfig config = |
||
1269 |
ManagedEVPPKey::GetPublicKeyEncodingFromJs( |
||
1270 |
52 |
args, &offset, kKeyContextExport); |
|
1271 |
✗✓ | 52 |
CHECK_EQ(offset, static_cast<unsigned int>(args.Length())); |
1272 |
52 |
result = key->ExportPublicKey(config); |
|
1273 |
} else { |
||
1274 |
✗✓ | 45 |
CHECK_EQ(type, kKeyTypePrivate); |
1275 |
45 |
unsigned int offset = 0; |
|
1276 |
NonCopyableMaybe<PrivateKeyEncodingConfig> config = |
||
1277 |
ManagedEVPPKey::GetPrivateKeyEncodingFromJs( |
||
1278 |
45 |
args, &offset, kKeyContextExport); |
|
1279 |
✗✓ | 45 |
if (config.IsEmpty()) |
1280 |
return; |
||
1281 |
✗✓ | 45 |
CHECK_EQ(offset, static_cast<unsigned int>(args.Length())); |
1282 |
45 |
result = key->ExportPrivateKey(config.Release()); |
|
1283 |
} |
||
1284 |
|||
1285 |
✓✗ | 764 |
if (!result.IsEmpty()) |
1286 |
2292 |
args.GetReturnValue().Set(result.FromMaybe(Local<Value>())); |
|
1287 |
} |
||
1288 |
|||
1289 |
667 |
MaybeLocal<Value> KeyObjectHandle::ExportSecretKey() const { |
|
1290 |
667 |
const char* buf = data_->GetSymmetricKey(); |
|
1291 |
667 |
unsigned int len = data_->GetSymmetricKeySize(); |
|
1292 |
1334 |
return Buffer::Copy(env(), buf, len).FromMaybe(Local<Value>()); |
|
1293 |
} |
||
1294 |
|||
1295 |
52 |
MaybeLocal<Value> KeyObjectHandle::ExportPublicKey( |
|
1296 |
const PublicKeyEncodingConfig& config) const { |
||
1297 |
52 |
return WritePublicKey(env(), data_->GetAsymmetricKey().get(), config); |
|
1298 |
} |
||
1299 |
|||
1300 |
45 |
MaybeLocal<Value> KeyObjectHandle::ExportPrivateKey( |
|
1301 |
const PrivateKeyEncodingConfig& config) const { |
||
1302 |
45 |
return WritePrivateKey(env(), data_->GetAsymmetricKey().get(), config); |
|
1303 |
} |
||
1304 |
|||
1305 |
920 |
void KeyObjectHandle::ExportJWK( |
|
1306 |
const v8::FunctionCallbackInfo<v8::Value>& args) { |
||
1307 |
920 |
Environment* env = Environment::GetCurrent(args); |
|
1308 |
KeyObjectHandle* key; |
||
1309 |
✗✓ | 920 |
ASSIGN_OR_RETURN_UNWRAP(&key, args.Holder()); |
1310 |
|||
1311 |
✗✓ | 920 |
CHECK(args[0]->IsObject()); |
1312 |
✗✓ | 920 |
CHECK(args[1]->IsBoolean()); |
1313 |
|||
1314 |
✓✗ | 1840 |
ExportJWKInner(env, key->Data(), args[0], args[1]->IsTrue()); |
1315 |
|||
1316 |
✓✗ | 1840 |
args.GetReturnValue().Set(args[0]); |
1317 |
} |
||
1318 |
|||
1319 |
854 |
void NativeKeyObject::Initialize(Environment* env, Local<Object> target) { |
|
1320 |
854 |
env->SetMethod(target, "createNativeKeyObjectClass", |
|
1321 |
NativeKeyObject::CreateNativeKeyObjectClass); |
||
1322 |
854 |
} |
|
1323 |
|||
1324 |
5205 |
void NativeKeyObject::RegisterExternalReferences( |
|
1325 |
ExternalReferenceRegistry* registry) { |
||
1326 |
5205 |
registry->Register(NativeKeyObject::CreateNativeKeyObjectClass); |
|
1327 |
5205 |
registry->Register(NativeKeyObject::New); |
|
1328 |
5205 |
} |
|
1329 |
|||
1330 |
4895 |
void NativeKeyObject::New(const FunctionCallbackInfo<Value>& args) { |
|
1331 |
4895 |
Environment* env = Environment::GetCurrent(args); |
|
1332 |
✗✓ | 4895 |
CHECK_EQ(args.Length(), 1); |
1333 |
✗✓ | 4895 |
CHECK(args[0]->IsObject()); |
1334 |
9790 |
KeyObjectHandle* handle = Unwrap<KeyObjectHandle>(args[0].As<Object>()); |
|
1335 |
4895 |
new NativeKeyObject(env, args.This(), handle->Data()); |
|
1336 |
4895 |
} |
|
1337 |
|||
1338 |
854 |
void NativeKeyObject::CreateNativeKeyObjectClass( |
|
1339 |
const FunctionCallbackInfo<Value>& args) { |
||
1340 |
854 |
Environment* env = Environment::GetCurrent(args); |
|
1341 |
|||
1342 |
✗✓ | 854 |
CHECK_EQ(args.Length(), 1); |
1343 |
854 |
Local<Value> callback = args[0]; |
|
1344 |
✗✓ | 854 |
CHECK(callback->IsFunction()); |
1345 |
|||
1346 |
854 |
Local<FunctionTemplate> t = env->NewFunctionTemplate(NativeKeyObject::New); |
|
1347 |
1708 |
t->InstanceTemplate()->SetInternalFieldCount( |
|
1348 |
KeyObjectHandle::kInternalFieldCount); |
||
1349 |
854 |
t->Inherit(BaseObject::GetConstructorTemplate(env)); |
|
1350 |
|||
1351 |
Local<Value> ctor; |
||
1352 |
✗✓ | 1708 |
if (!t->GetFunction(env->context()).ToLocal(&ctor)) |
1353 |
return; |
||
1354 |
|||
1355 |
1708 |
Local<Value> recv = Undefined(env->isolate()); |
|
1356 |
Local<Value> ret_v; |
||
1357 |
854 |
if (!callback.As<Function>()->Call( |
|
1358 |
✗✓ | 1708 |
env->context(), recv, 1, &ctor).ToLocal(&ret_v)) { |
1359 |
return; |
||
1360 |
} |
||
1361 |
854 |
Local<Array> ret = ret_v.As<Array>(); |
|
1362 |
✗✓ | 1708 |
if (!ret->Get(env->context(), 1).ToLocal(&ctor)) return; |
1363 |
854 |
env->set_crypto_key_object_secret_constructor(ctor.As<Function>()); |
|
1364 |
✗✓ | 1708 |
if (!ret->Get(env->context(), 2).ToLocal(&ctor)) return; |
1365 |
854 |
env->set_crypto_key_object_public_constructor(ctor.As<Function>()); |
|
1366 |
✗✓ | 1708 |
if (!ret->Get(env->context(), 3).ToLocal(&ctor)) return; |
1367 |
854 |
env->set_crypto_key_object_private_constructor(ctor.As<Function>()); |
|
1368 |
1708 |
args.GetReturnValue().Set(ret); |
|
1369 |
} |
||
1370 |
|||
1371 |
11 |
BaseObjectPtr<BaseObject> NativeKeyObject::KeyObjectTransferData::Deserialize( |
|
1372 |
Environment* env, |
||
1373 |
Local<Context> context, |
||
1374 |
std::unique_ptr<worker::TransferData> self) { |
||
1375 |
✓✓ | 22 |
if (context != env->context()) { |
1376 |
3 |
THROW_ERR_MESSAGE_TARGET_CONTEXT_UNAVAILABLE(env); |
|
1377 |
3 |
return {}; |
|
1378 |
} |
||
1379 |
|||
1380 |
Local<Value> handle; |
||
1381 |
✗✓ | 16 |
if (!KeyObjectHandle::Create(env, data_).ToLocal(&handle)) |
1382 |
return {}; |
||
1383 |
|||
1384 |
Local<Function> key_ctor; |
||
1385 |
Local<Value> arg = FIXED_ONE_BYTE_STRING(env->isolate(), |
||
1386 |
8 |
"internal/crypto/keys"); |
|
1387 |
8 |
if (env->native_module_require()-> |
|
1388 |
✗✓ | 24 |
Call(context, Null(env->isolate()), 1, &arg).IsEmpty()) { |
1389 |
return {}; |
||
1390 |
} |
||
1391 |
✓✓✓✗ |
8 |
switch (data_->GetKeyType()) { |
1392 |
4 |
case kKeyTypeSecret: |
|
1393 |
4 |
key_ctor = env->crypto_key_object_secret_constructor(); |
|
1394 |
4 |
break; |
|
1395 |
2 |
case kKeyTypePublic: |
|
1396 |
2 |
key_ctor = env->crypto_key_object_public_constructor(); |
|
1397 |
2 |
break; |
|
1398 |
2 |
case kKeyTypePrivate: |
|
1399 |
2 |
key_ctor = env->crypto_key_object_private_constructor(); |
|
1400 |
2 |
break; |
|
1401 |
default: |
||
1402 |
CHECK(false); |
||
1403 |
} |
||
1404 |
|||
1405 |
Local<Value> key; |
||
1406 |
✗✓ | 16 |
if (!key_ctor->NewInstance(context, 1, &handle).ToLocal(&key)) |
1407 |
return {}; |
||
1408 |
|||
1409 |
8 |
return BaseObjectPtr<BaseObject>(Unwrap<KeyObjectHandle>(key.As<Object>())); |
|
1410 |
} |
||
1411 |
|||
1412 |
11 |
BaseObject::TransferMode NativeKeyObject::GetTransferMode() const { |
|
1413 |
11 |
return BaseObject::TransferMode::kCloneable; |
|
1414 |
} |
||
1415 |
|||
1416 |
11 |
std::unique_ptr<worker::TransferData> NativeKeyObject::CloneForMessaging() |
|
1417 |
const { |
||
1418 |
11 |
return std::make_unique<KeyObjectTransferData>(handle_data_); |
|
1419 |
} |
||
1420 |
|||
1421 |
248 |
WebCryptoKeyExportStatus PKEY_SPKI_Export( |
|
1422 |
KeyObjectData* key_data, |
||
1423 |
ByteSource* out) { |
||
1424 |
✗✓ | 248 |
CHECK_EQ(key_data->GetKeyType(), kKeyTypePublic); |
1425 |
496 |
ManagedEVPPKey m_pkey = key_data->GetAsymmetricKey(); |
|
1426 |
496 |
Mutex::ScopedLock lock(*m_pkey.mutex()); |
|
1427 |
496 |
BIOPointer bio(BIO_new(BIO_s_mem())); |
|
1428 |
✗✓ | 248 |
CHECK(bio); |
1429 |
✗✓ | 248 |
if (!i2d_PUBKEY_bio(bio.get(), m_pkey.get())) |
1430 |
return WebCryptoKeyExportStatus::FAILED; |
||
1431 |
|||
1432 |
248 |
*out = ByteSource::FromBIO(bio); |
|
1433 |
248 |
return WebCryptoKeyExportStatus::OK; |
|
1434 |
} |
||
1435 |
|||
1436 |
255 |
WebCryptoKeyExportStatus PKEY_PKCS8_Export( |
|
1437 |
KeyObjectData* key_data, |
||
1438 |
ByteSource* out) { |
||
1439 |
✗✓ | 255 |
CHECK_EQ(key_data->GetKeyType(), kKeyTypePrivate); |
1440 |
510 |
ManagedEVPPKey m_pkey = key_data->GetAsymmetricKey(); |
|
1441 |
510 |
Mutex::ScopedLock lock(*m_pkey.mutex()); |
|
1442 |
|||
1443 |
510 |
BIOPointer bio(BIO_new(BIO_s_mem())); |
|
1444 |
✗✓ | 255 |
CHECK(bio); |
1445 |
510 |
PKCS8Pointer p8inf(EVP_PKEY2PKCS8(m_pkey.get())); |
|
1446 |
✗✓ | 255 |
if (!i2d_PKCS8_PRIV_KEY_INFO_bio(bio.get(), p8inf.get())) |
1447 |
return WebCryptoKeyExportStatus::FAILED; |
||
1448 |
|||
1449 |
255 |
*out = ByteSource::FromBIO(bio); |
|
1450 |
255 |
return WebCryptoKeyExportStatus::OK; |
|
1451 |
} |
||
1452 |
|||
1453 |
namespace Keys { |
||
1454 |
854 |
void Initialize(Environment* env, Local<Object> target) { |
|
1455 |
854 |
target->Set(env->context(), |
|
1456 |
FIXED_ONE_BYTE_STRING(env->isolate(), "KeyObjectHandle"), |
||
1457 |
3416 |
KeyObjectHandle::Initialize(env)).Check(); |
|
1458 |
|||
1459 |
2562 |
NODE_DEFINE_CONSTANT(target, kWebCryptoKeyFormatRaw); |
|
1460 |
2562 |
NODE_DEFINE_CONSTANT(target, kWebCryptoKeyFormatPKCS8); |
|
1461 |
2562 |
NODE_DEFINE_CONSTANT(target, kWebCryptoKeyFormatSPKI); |
|
1462 |
2562 |
NODE_DEFINE_CONSTANT(target, kWebCryptoKeyFormatJWK); |
|
1463 |
|||
1464 |
2562 |
NODE_DEFINE_CONSTANT(target, EVP_PKEY_ED25519); |
|
1465 |
2562 |
NODE_DEFINE_CONSTANT(target, EVP_PKEY_ED448); |
|
1466 |
2562 |
NODE_DEFINE_CONSTANT(target, EVP_PKEY_X25519); |
|
1467 |
2562 |
NODE_DEFINE_CONSTANT(target, EVP_PKEY_X448); |
|
1468 |
2562 |
NODE_DEFINE_CONSTANT(target, kKeyEncodingPKCS1); |
|
1469 |
2562 |
NODE_DEFINE_CONSTANT(target, kKeyEncodingPKCS8); |
|
1470 |
2562 |
NODE_DEFINE_CONSTANT(target, kKeyEncodingSPKI); |
|
1471 |
2562 |
NODE_DEFINE_CONSTANT(target, kKeyEncodingSEC1); |
|
1472 |
2562 |
NODE_DEFINE_CONSTANT(target, kKeyFormatDER); |
|
1473 |
2562 |
NODE_DEFINE_CONSTANT(target, kKeyFormatPEM); |
|
1474 |
2562 |
NODE_DEFINE_CONSTANT(target, kKeyFormatJWK); |
|
1475 |
2562 |
NODE_DEFINE_CONSTANT(target, kKeyTypeSecret); |
|
1476 |
2562 |
NODE_DEFINE_CONSTANT(target, kKeyTypePublic); |
|
1477 |
2562 |
NODE_DEFINE_CONSTANT(target, kKeyTypePrivate); |
|
1478 |
2562 |
NODE_DEFINE_CONSTANT(target, kSigEncDER); |
|
1479 |
1708 |
NODE_DEFINE_CONSTANT(target, kSigEncP1363); |
|
1480 |
854 |
} |
|
1481 |
|||
1482 |
5205 |
void RegisterExternalReferences(ExternalReferenceRegistry* registry) { |
|
1483 |
5205 |
KeyObjectHandle::RegisterExternalReferences(registry); |
|
1484 |
5205 |
} |
|
1485 |
} // namespace Keys |
||
1486 |
|||
1487 |
} // namespace crypto |
||
1488 |
} // namespace node |
Generated by: GCOVR (Version 4.2) |