GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: base_object.h Lines: 2 3 66.7 %
Date: 2022-09-21 04:23:13 Branches: 0 0 - %

Line Branch Exec Source
1
// Copyright Joyent, Inc. and other Node contributors.
2
//
3
// Permission is hereby granted, free of charge, to any person obtaining a
4
// copy of this software and associated documentation files (the
5
// "Software"), to deal in the Software without restriction, including
6
// without limitation the rights to use, copy, modify, merge, publish,
7
// distribute, sublicense, and/or sell copies of the Software, and to permit
8
// persons to whom the Software is furnished to do so, subject to the
9
// following conditions:
10
//
11
// The above copyright notice and this permission notice shall be included
12
// in all copies or substantial portions of the Software.
13
//
14
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
16
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
17
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
18
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
19
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
20
// USE OR OTHER DEALINGS IN THE SOFTWARE.
21
22
#ifndef SRC_BASE_OBJECT_H_
23
#define SRC_BASE_OBJECT_H_
24
25
#if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
26
27
#include <type_traits>  // std::remove_reference
28
#include "memory_tracker.h"
29
#include "v8.h"
30
31
namespace node {
32
33
class Environment;
34
class IsolateData;
35
template <typename T, bool kIsWeak>
36
class BaseObjectPtrImpl;
37
38
namespace worker {
39
class TransferData;
40
}
41
42
extern uint16_t kNodeEmbedderId;
43
44
class BaseObject : public MemoryRetainer {
45
 public:
46
  enum InternalFields { kEmbedderType, kSlot, kInternalFieldCount };
47
48
  // Associates this object with `object`. It uses the 1st internal field for
49
  // that, and in particular aborts if there is no such field.
50
  BaseObject(Environment* env, v8::Local<v8::Object> object);
51
  ~BaseObject() override;
52
53
  BaseObject() = delete;
54
55
  // Returns the wrapped object.  Returns an empty handle when
56
  // persistent.IsEmpty() is true.
57
  inline v8::Local<v8::Object> object() const;
58
59
  // Same as the above, except it additionally verifies that this object
60
  // is associated with the passed Isolate in debug mode.
61
  inline v8::Local<v8::Object> object(v8::Isolate* isolate) const;
62
63
  inline v8::Global<v8::Object>& persistent();
64
65
  inline Environment* env() const;
66
67
  // Get a BaseObject* pointer, or subclass pointer, for the JS object that
68
  // was also passed to the `BaseObject()` constructor initially.
69
  // This may return `nullptr` if the C++ object has not been constructed yet,
70
  // e.g. when the JS object used `MakeLazilyInitializedJSTemplate`.
71
  static void LazilyInitializedJSTemplateConstructor(
72
      const v8::FunctionCallbackInfo<v8::Value>& args);
73
  static inline BaseObject* FromJSObject(v8::Local<v8::Value> object);
74
  template <typename T>
75
  static inline T* FromJSObject(v8::Local<v8::Value> object);
76
77
  // Make the `v8::Global` a weak reference and, `delete` this object once
78
  // the JS object has been garbage collected and there are no (strong)
79
  // BaseObjectPtr references to it.
80
  void MakeWeak();
81
82
  // Undo `MakeWeak()`, i.e. turn this into a strong reference that is a GC
83
  // root and will not be touched by the garbage collector.
84
  inline void ClearWeak();
85
86
  // Reports whether this BaseObject is using a weak reference or detached,
87
  // i.e. whether is can be deleted by GC once no strong BaseObjectPtrs refer
88
  // to it anymore.
89
  inline bool IsWeakOrDetached() const;
90
91
  // Utility to create a FunctionTemplate with one internal field (used for
92
  // the `BaseObject*` pointer) and a constructor that initializes that field
93
  // to `nullptr`.
94
  static v8::Local<v8::FunctionTemplate> MakeLazilyInitializedJSTemplate(
95
      Environment* env);
96
97
  // Setter/Getter pair for internal fields that can be passed to SetAccessor.
98
  template <int Field>
99
  static void InternalFieldGet(v8::Local<v8::String> property,
100
                               const v8::PropertyCallbackInfo<v8::Value>& info);
101
  template <int Field, bool (v8::Value::*typecheck)() const>
102
  static void InternalFieldSet(v8::Local<v8::String> property,
103
                               v8::Local<v8::Value> value,
104
                               const v8::PropertyCallbackInfo<void>& info);
105
106
  // This is a bit of a hack. See the override in async_wrap.cc for details.
107
  virtual bool IsDoneInitializing() const;
108
109
  // Can be used to avoid this object keeping itself alive as a GC root
110
  // indefinitely, for example when this object is owned and deleted by another
111
  // BaseObject once that is torn down. This can only be called when there is
112
  // a BaseObjectPtr to this object.
113
  inline void Detach();
114
115
  static inline v8::Local<v8::FunctionTemplate> GetConstructorTemplate(
116
      Environment* env);
117
  static v8::Local<v8::FunctionTemplate> GetConstructorTemplate(
118
      IsolateData* isolate_data);
119
120
  // Interface for transferring BaseObject instances using the .postMessage()
121
  // method of MessagePorts (and, by extension, Workers).
122
  // GetTransferMode() returns a transfer mode that indicates how to deal with
123
  // the current object:
124
  // - kUntransferable:
125
  //     No transfer is possible, either because this type of BaseObject does
126
  //     not know how to be transferred, or because it is not in a state in
127
  //     which it is possible to do so (e.g. because it has already been
128
  //     transferred).
129
  // - kTransferable:
130
  //     This object can be transferred in a destructive fashion, i.e. will be
131
  //     rendered unusable on the sending side of the channel in the process
132
  //     of being transferred. (In C++ this would be referred to as movable but
133
  //     not copyable.) Objects of this type need to be listed in the
134
  //     `transferList` argument of the relevant postMessage() call in order to
135
  //     make sure that they are not accidentally destroyed on the sending side.
136
  //     TransferForMessaging() will be called to get a representation of the
137
  //     object that is used for subsequent deserialization.
138
  //     The NestedTransferables() method can be used to transfer other objects
139
  //     along with this one, if a situation requires it.
140
  // - kCloneable:
141
  //     This object can be cloned without being modified.
142
  //     CloneForMessaging() will be called to get a representation of the
143
  //     object that is used for subsequent deserialization, unless the
144
  //     object is listed in transferList, in which case TransferForMessaging()
145
  //     is attempted first.
146
  // After a successful clone, FinalizeTransferRead() is called on the receiving
147
  // end, and can read deserialize JS data possibly serialized by a previous
148
  // FinalizeTransferWrite() call.
149
  enum class TransferMode {
150
    kUntransferable,
151
    kTransferable,
152
    kCloneable
153
  };
154
  virtual TransferMode GetTransferMode() const;
155
  virtual std::unique_ptr<worker::TransferData> TransferForMessaging();
156
  virtual std::unique_ptr<worker::TransferData> CloneForMessaging() const;
157
  virtual v8::Maybe<std::vector<BaseObjectPtrImpl<BaseObject, false>>>
158
      NestedTransferables() const;
159
  virtual v8::Maybe<bool> FinalizeTransferRead(
160
      v8::Local<v8::Context> context, v8::ValueDeserializer* deserializer);
161
162
  // Indicates whether this object is expected to use a strong reference during
163
  // a clean process exit (due to an empty event loop).
164
  virtual bool IsNotIndicativeOfMemoryLeakAtExit() const;
165
166
  virtual inline void OnGCCollect();
167
168
  virtual inline bool is_snapshotable() const { return false; }
169
170
 private:
171
  v8::Local<v8::Object> WrappedObject() const override;
172
  bool IsRootNode() const override;
173
  static void DeleteMe(void* data);
174
175
  // persistent_handle_ needs to be at a fixed offset from the start of the
176
  // class because it is used by src/node_postmortem_metadata.cc to calculate
177
  // offsets and generate debug symbols for BaseObject, which assumes that the
178
  // position of members in memory are predictable. For more information please
179
  // refer to `doc/contributing/node-postmortem-support.md`
180
  friend int GenDebugSymbols();
181
  friend class CleanupQueue;
182
  template <typename T, bool kIsWeak>
183
  friend class BaseObjectPtrImpl;
184
185
  v8::Global<v8::Object> persistent_handle_;
186
187
  // Metadata that is associated with this BaseObject if there are BaseObjectPtr
188
  // or BaseObjectWeakPtr references to it.
189
  // This object is deleted when the BaseObject itself is destroyed, and there
190
  // are no weak references to it.
191
  struct PointerData {
192
    // Number of BaseObjectPtr instances that refer to this object. If this
193
    // is non-zero, the BaseObject is always a GC root and will not be destroyed
194
    // during cleanup until the count drops to zero again.
195
    unsigned int strong_ptr_count = 0;
196
    // Number of BaseObjectWeakPtr instances that refer to this object.
197
    unsigned int weak_ptr_count = 0;
198
    // Indicates whether MakeWeak() has been called.
199
    bool wants_weak_jsobj = false;
200
    // Indicates whether Detach() has been called. If that is the case, this
201
    // object will be destroyed once the strong pointer count drops to zero.
202
    bool is_detached = false;
203
    // Reference to the original BaseObject. This is used by weak pointers.
204
    BaseObject* self = nullptr;
205
  };
206
207
  inline bool has_pointer_data() const;
208
  // This creates a PointerData struct if none was associated with this
209
  // BaseObject before.
210
  PointerData* pointer_data();
211
212
  // Functions that adjust the strong pointer count.
213
  void decrease_refcount();
214
  void increase_refcount();
215
216
  Environment* env_;
217
  PointerData* pointer_data_ = nullptr;
218
};
219
220
// Global alias for FromJSObject() to avoid churn.
221
template <typename T>
222
203491
inline T* Unwrap(v8::Local<v8::Value> obj) {
223
203491
  return BaseObject::FromJSObject<T>(obj);
224
}
225
226
#define ASSIGN_OR_RETURN_UNWRAP(ptr, obj, ...)                                 \
227
  do {                                                                         \
228
    *ptr = static_cast<typename std::remove_reference<decltype(*ptr)>::type>(  \
229
        BaseObject::FromJSObject(obj));                                        \
230
    if (*ptr == nullptr) return __VA_ARGS__;                                   \
231
  } while (0)
232
233
// Implementation of a generic strong or weak pointer to a BaseObject.
234
// If strong, this will keep the target BaseObject alive regardless of other
235
// circumstances such as the GC or Environment cleanup.
236
// If weak, destruction behaviour is not affected, but the pointer will be
237
// reset to nullptr once the BaseObject is destroyed.
238
// The API matches std::shared_ptr closely.
239
template <typename T, bool kIsWeak>
240
class BaseObjectPtrImpl final {
241
 public:
242
  inline BaseObjectPtrImpl();
243
  inline ~BaseObjectPtrImpl();
244
  inline explicit BaseObjectPtrImpl(T* target);
245
246
  // Copy and move constructors. Note that the templated version is not a copy
247
  // or move constructor in the C++ sense of the word, so an identical
248
  // untemplated version is provided.
249
  template <typename U, bool kW>
250
  inline BaseObjectPtrImpl(const BaseObjectPtrImpl<U, kW>& other);
251
  inline BaseObjectPtrImpl(const BaseObjectPtrImpl& other);
252
  template <typename U, bool kW>
253
  inline BaseObjectPtrImpl& operator=(const BaseObjectPtrImpl<U, kW>& other);
254
  inline BaseObjectPtrImpl& operator=(const BaseObjectPtrImpl& other);
255
  inline BaseObjectPtrImpl(BaseObjectPtrImpl&& other);
256
  inline BaseObjectPtrImpl& operator=(BaseObjectPtrImpl&& other);
257
258
  inline void reset(T* ptr = nullptr);
259
  inline T* get() const;
260
  inline T& operator*() const;
261
  inline T* operator->() const;
262
  inline operator bool() const;
263
264
  template <typename U, bool kW>
265
  inline bool operator ==(const BaseObjectPtrImpl<U, kW>& other) const;
266
  template <typename U, bool kW>
267
  inline bool operator !=(const BaseObjectPtrImpl<U, kW>& other) const;
268
269
 private:
270
  union {
271
    BaseObject* target;                     // Used for strong pointers.
272
    BaseObject::PointerData* pointer_data;  // Used for weak pointers.
273
  } data_;
274
275
  inline BaseObject* get_base_object() const;
276
  inline BaseObject::PointerData* pointer_data() const;
277
};
278
279
template <typename T>
280
using BaseObjectPtr = BaseObjectPtrImpl<T, false>;
281
template <typename T>
282
using BaseObjectWeakPtr = BaseObjectPtrImpl<T, true>;
283
284
// Create a BaseObject instance and return a pointer to it.
285
// This variant leaves the object as a GC root by default.
286
template <typename T, typename... Args>
287
inline BaseObjectPtr<T> MakeBaseObject(Args&&... args);
288
// Create a BaseObject instance and return a pointer to it.
289
// This variant detaches the object by default, meaning that the caller fully
290
// owns it, and once the last BaseObjectPtr to it is destroyed, the object
291
// itself is also destroyed.
292
template <typename T, typename... Args>
293
inline BaseObjectPtr<T> MakeDetachedBaseObject(Args&&... args);
294
295
}  // namespace node
296
297
#endif  // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
298
299
#endif  // SRC_BASE_OBJECT_H_