GCC Code Coverage Report
Directory: ./ Exec Total Coverage
File: node_platform.cc Lines: 350 366 95.6 %
Date: 2022-09-11 04:22:34 Branches: 78 102 76.5 %

Line Branch Exec Source
1
#include "node_platform.h"
2
#include "node_internals.h"
3
4
#include "env-inl.h"
5
#include "debug_utils-inl.h"
6
#include <algorithm>  // find_if(), find(), move()
7
#include <cmath>  // llround()
8
#include <memory>  // unique_ptr(), shared_ptr(), make_shared()
9
10
namespace node {
11
12
using v8::Isolate;
13
using v8::Object;
14
using v8::Platform;
15
using v8::Task;
16
17
namespace {
18
19
struct PlatformWorkerData {
20
  TaskQueue<Task>* task_queue;
21
  Mutex* platform_workers_mutex;
22
  ConditionVariable* platform_workers_ready;
23
  int* pending_platform_workers;
24
  int id;
25
};
26
27
22118
static void PlatformWorkerThread(void* data) {
28
  std::unique_ptr<PlatformWorkerData>
29
44200
      worker_data(static_cast<PlatformWorkerData*>(data));
30
31
22118
  TaskQueue<Task>* pending_worker_tasks = worker_data->task_queue;
32

28011
  TRACE_EVENT_METADATA1("__metadata", "thread_name", "name",
33
                        "PlatformWorkerThread");
34
35
  // Notify the main thread that the platform worker is ready.
36
  {
37
44236
    Mutex::ScopedLock lock(*worker_data->platform_workers_mutex);
38
22118
    (*worker_data->pending_platform_workers)--;
39
22118
    worker_data->platform_workers_ready->Signal(lock);
40
  }
41
42
124491
  while (std::unique_ptr<Task> task = pending_worker_tasks->BlockingPop()) {
43
102373
    task->Run();
44
102373
    pending_worker_tasks->NotifyOfCompletion();
45
102373
  }
46
22082
}
47
48
}  // namespace
49
50
class WorkerThreadsTaskRunner::DelayedTaskScheduler {
51
 public:
52
5528
  explicit DelayedTaskScheduler(TaskQueue<Task>* tasks)
53
5528
    : pending_worker_tasks_(tasks) {}
54
55
5528
  std::unique_ptr<uv_thread_t> Start() {
56
5528
    auto start_thread = [](void* data) {
57
5528
      static_cast<DelayedTaskScheduler*>(data)->Run();
58
5519
    };
59
5528
    std::unique_ptr<uv_thread_t> t { new uv_thread_t() };
60
5528
    uv_sem_init(&ready_, 0);
61
5528
    CHECK_EQ(0, uv_thread_create(t.get(), start_thread, this));
62
5528
    uv_sem_wait(&ready_);
63
5528
    uv_sem_destroy(&ready_);
64
5528
    return t;
65
  }
66
67
526
  void PostDelayedTask(std::unique_ptr<Task> task, double delay_in_seconds) {
68
526
    tasks_.Push(std::make_unique<ScheduleTask>(this, std::move(task),
69
                                               delay_in_seconds));
70
526
    uv_async_send(&flush_tasks_);
71
526
  }
72
73
5519
  void Stop() {
74
5519
    tasks_.Push(std::make_unique<StopTask>(this));
75
5519
    uv_async_send(&flush_tasks_);
76
5519
  }
77
78
 private:
79
5528
  void Run() {
80

11141
    TRACE_EVENT_METADATA1("__metadata", "thread_name", "name",
81
                          "WorkerThreadsTaskRunner::DelayedTaskScheduler");
82
5528
    loop_.data = this;
83
5528
    CHECK_EQ(0, uv_loop_init(&loop_));
84
5528
    flush_tasks_.data = this;
85
5528
    CHECK_EQ(0, uv_async_init(&loop_, &flush_tasks_, FlushTasks));
86
5528
    uv_sem_post(&ready_);
87
88
5528
    uv_run(&loop_, UV_RUN_DEFAULT);
89
5519
    CheckedUvLoopClose(&loop_);
90
5519
  }
91
92
6045
  static void FlushTasks(uv_async_t* flush_tasks) {
93
    DelayedTaskScheduler* scheduler =
94
6045
        ContainerOf(&DelayedTaskScheduler::loop_, flush_tasks->loop);
95
12090
    while (std::unique_ptr<Task> task = scheduler->tasks_.Pop())
96
12090
      task->Run();
97
6045
  }
98
99
  class StopTask : public Task {
100
   public:
101
5519
    explicit StopTask(DelayedTaskScheduler* scheduler): scheduler_(scheduler) {}
102
103
5519
    void Run() override {
104
5519
      std::vector<uv_timer_t*> timers;
105
5846
      for (uv_timer_t* timer : scheduler_->timers_)
106
327
        timers.push_back(timer);
107
5846
      for (uv_timer_t* timer : timers)
108
327
        scheduler_->TakeTimerTask(timer);
109
5519
      uv_close(reinterpret_cast<uv_handle_t*>(&scheduler_->flush_tasks_),
110
5519
               [](uv_handle_t* handle) {});
111
5519
    }
112
113
   private:
114
     DelayedTaskScheduler* scheduler_;
115
  };
116
117
  class ScheduleTask : public Task {
118
   public:
119
526
    ScheduleTask(DelayedTaskScheduler* scheduler,
120
                 std::unique_ptr<Task> task,
121
                 double delay_in_seconds)
122
526
      : scheduler_(scheduler),
123
526
        task_(std::move(task)),
124
526
        delay_in_seconds_(delay_in_seconds) {}
125
126
526
    void Run() override {
127
526
      uint64_t delay_millis = llround(delay_in_seconds_ * 1000);
128
526
      std::unique_ptr<uv_timer_t> timer(new uv_timer_t());
129
526
      CHECK_EQ(0, uv_timer_init(&scheduler_->loop_, timer.get()));
130
526
      timer->data = task_.release();
131
526
      CHECK_EQ(0, uv_timer_start(timer.get(), RunTask, delay_millis, 0));
132
526
      scheduler_->timers_.insert(timer.release());
133
526
    }
134
135
   private:
136
    DelayedTaskScheduler* scheduler_;
137
    std::unique_ptr<Task> task_;
138
    double delay_in_seconds_;
139
  };
140
141
199
  static void RunTask(uv_timer_t* timer) {
142
    DelayedTaskScheduler* scheduler =
143
199
        ContainerOf(&DelayedTaskScheduler::loop_, timer->loop);
144
199
    scheduler->pending_worker_tasks_->Push(scheduler->TakeTimerTask(timer));
145
199
  }
146
147
526
  std::unique_ptr<Task> TakeTimerTask(uv_timer_t* timer) {
148
526
    std::unique_ptr<Task> task(static_cast<Task*>(timer->data));
149
526
    uv_timer_stop(timer);
150
526
    uv_close(reinterpret_cast<uv_handle_t*>(timer), [](uv_handle_t* handle) {
151
526
      delete reinterpret_cast<uv_timer_t*>(handle);
152
526
    });
153
526
    timers_.erase(timer);
154
526
    return task;
155
  }
156
157
  uv_sem_t ready_;
158
  TaskQueue<Task>* pending_worker_tasks_;
159
160
  TaskQueue<Task> tasks_;
161
  uv_loop_t loop_;
162
  uv_async_t flush_tasks_;
163
  std::unordered_set<uv_timer_t*> timers_;
164
};
165
166
5528
WorkerThreadsTaskRunner::WorkerThreadsTaskRunner(int thread_pool_size) {
167
11056
  Mutex platform_workers_mutex;
168
11056
  ConditionVariable platform_workers_ready;
169
170
11056
  Mutex::ScopedLock lock(platform_workers_mutex);
171
5528
  int pending_platform_workers = thread_pool_size;
172
173
5528
  delayed_task_scheduler_ = std::make_unique<DelayedTaskScheduler>(
174
5528
      &pending_worker_tasks_);
175
5528
  threads_.push_back(delayed_task_scheduler_->Start());
176
177
27646
  for (int i = 0; i < thread_pool_size; i++) {
178
    PlatformWorkerData* worker_data = new PlatformWorkerData{
179
22118
      &pending_worker_tasks_, &platform_workers_mutex,
180
      &platform_workers_ready, &pending_platform_workers, i
181
22118
    };
182
22118
    std::unique_ptr<uv_thread_t> t { new uv_thread_t() };
183
22118
    if (uv_thread_create(t.get(), PlatformWorkerThread,
184
22118
                         worker_data) != 0) {
185
      break;
186
    }
187
22118
    threads_.push_back(std::move(t));
188
  }
189
190
  // Wait for platform workers to initialize before continuing with the
191
  // bootstrap.
192
25448
  while (pending_platform_workers > 0) {
193
19920
    platform_workers_ready.Wait(lock);
194
  }
195
5528
}
196
197
102174
void WorkerThreadsTaskRunner::PostTask(std::unique_ptr<Task> task) {
198
102174
  pending_worker_tasks_.Push(std::move(task));
199
102174
}
200
201
526
void WorkerThreadsTaskRunner::PostDelayedTask(std::unique_ptr<Task> task,
202
                                              double delay_in_seconds) {
203
526
  delayed_task_scheduler_->PostDelayedTask(std::move(task), delay_in_seconds);
204
526
}
205
206
14731
void WorkerThreadsTaskRunner::BlockingDrain() {
207
14731
  pending_worker_tasks_.BlockingDrain();
208
14731
}
209
210
5519
void WorkerThreadsTaskRunner::Shutdown() {
211
5519
  pending_worker_tasks_.Stop();
212
5519
  delayed_task_scheduler_->Stop();
213
33120
  for (size_t i = 0; i < threads_.size(); i++) {
214
27601
    CHECK_EQ(0, uv_thread_join(threads_[i].get()));
215
  }
216
5519
}
217
218
61807
int WorkerThreadsTaskRunner::NumberOfWorkerThreads() const {
219
61807
  return threads_.size();
220
}
221
222
6321
PerIsolatePlatformData::PerIsolatePlatformData(
223
6321
    Isolate* isolate, uv_loop_t* loop)
224
6321
  : isolate_(isolate), loop_(loop) {
225
6321
  flush_tasks_ = new uv_async_t();
226
6321
  CHECK_EQ(0, uv_async_init(loop, flush_tasks_, FlushTasks));
227
6321
  flush_tasks_->data = static_cast<void*>(this);
228
6321
  uv_unref(reinterpret_cast<uv_handle_t*>(flush_tasks_));
229
6321
}
230
231
std::shared_ptr<v8::TaskRunner>
232
28468
PerIsolatePlatformData::GetForegroundTaskRunner() {
233
28468
  return shared_from_this();
234
}
235
236
7796
void PerIsolatePlatformData::FlushTasks(uv_async_t* handle) {
237
7796
  auto platform_data = static_cast<PerIsolatePlatformData*>(handle->data);
238
7796
  platform_data->FlushForegroundTasksInternal();
239
7796
}
240
241
void PerIsolatePlatformData::PostIdleTask(std::unique_ptr<v8::IdleTask> task) {
242
  UNREACHABLE();
243
}
244
245
9443
void PerIsolatePlatformData::PostTask(std::unique_ptr<Task> task) {
246
9443
  if (flush_tasks_ == nullptr) {
247
    // V8 may post tasks during Isolate disposal. In that case, the only
248
    // sensible path forward is to discard the task.
249
    return;
250
  }
251
9443
  foreground_tasks_.Push(std::move(task));
252
9443
  uv_async_send(flush_tasks_);
253
}
254
255
5730
void PerIsolatePlatformData::PostDelayedTask(
256
    std::unique_ptr<Task> task, double delay_in_seconds) {
257
5730
  if (flush_tasks_ == nullptr) {
258
    // V8 may post tasks during Isolate disposal. In that case, the only
259
    // sensible path forward is to discard the task.
260
    return;
261
  }
262
11460
  std::unique_ptr<DelayedTask> delayed(new DelayedTask());
263
5730
  delayed->task = std::move(task);
264
5730
  delayed->platform_data = shared_from_this();
265
5730
  delayed->timeout = delay_in_seconds;
266
5730
  foreground_delayed_tasks_.Push(std::move(delayed));
267
5730
  uv_async_send(flush_tasks_);
268
}
269
270
7980
void PerIsolatePlatformData::PostNonNestableTask(std::unique_ptr<Task> task) {
271
7980
  PostTask(std::move(task));
272
7980
}
273
274
void PerIsolatePlatformData::PostNonNestableDelayedTask(
275
    std::unique_ptr<Task> task,
276
    double delay_in_seconds) {
277
  PostDelayedTask(std::move(task), delay_in_seconds);
278
}
279
280
1606
PerIsolatePlatformData::~PerIsolatePlatformData() {
281
1606
  CHECK(!flush_tasks_);
282
}
283
284
740
void PerIsolatePlatformData::AddShutdownCallback(void (*callback)(void*),
285
                                                 void* data) {
286
740
  shutdown_callbacks_.emplace_back(ShutdownCallback { callback, data });
287
740
}
288
289
5748
void PerIsolatePlatformData::Shutdown() {
290
5748
  if (flush_tasks_ == nullptr)
291
    return;
292
293
  // While there should be no V8 tasks in the queues at this point, it is
294
  // possible that Node.js-internal tasks from e.g. the inspector are still
295
  // lying around. We clear these queues and ignore the return value,
296
  // effectively deleting the tasks instead of running them.
297
5748
  foreground_delayed_tasks_.PopAll();
298
5748
  foreground_tasks_.PopAll();
299
5748
  scheduled_delayed_tasks_.clear();
300
301
  // Both destroying the scheduled_delayed_tasks_ lists and closing
302
  // flush_tasks_ handle add tasks to the event loop. We keep a count of all
303
  // non-closed handles, and when that reaches zero, we inform any shutdown
304
  // callbacks that the platform is done as far as this Isolate is concerned.
305
5748
  self_reference_ = shared_from_this();
306
5748
  uv_close(reinterpret_cast<uv_handle_t*>(flush_tasks_),
307
803
           [](uv_handle_t* handle) {
308
    std::unique_ptr<uv_async_t> flush_tasks {
309
1606
        reinterpret_cast<uv_async_t*>(handle) };
310
    PerIsolatePlatformData* platform_data =
311
803
        static_cast<PerIsolatePlatformData*>(flush_tasks->data);
312
803
    platform_data->DecreaseHandleCount();
313
803
    platform_data->self_reference_.reset();
314
803
  });
315
5748
  flush_tasks_ = nullptr;
316
}
317
318
1601
void PerIsolatePlatformData::DecreaseHandleCount() {
319
1601
  CHECK_GE(uv_handle_count_, 1);
320
1601
  if (--uv_handle_count_ == 0) {
321
1543
    for (const auto& callback : shutdown_callbacks_)
322
740
      callback.cb(callback.data);
323
  }
324
1601
}
325
326
5528
NodePlatform::NodePlatform(int thread_pool_size,
327
                           v8::TracingController* tracing_controller,
328
5528
                           v8::PageAllocator* page_allocator) {
329
5528
  if (tracing_controller != nullptr) {
330
5521
    tracing_controller_ = tracing_controller;
331
  } else {
332
7
    tracing_controller_ = new v8::TracingController();
333
  }
334
335
  // V8 will default to its built in allocator if none is provided.
336
5528
  page_allocator_ = page_allocator;
337
338
  // TODO(addaleax): It's a bit icky that we use global state here, but we can't
339
  // really do anything about it unless V8 starts exposing a way to access the
340
  // current v8::Platform instance.
341
5528
  SetTracingController(tracing_controller_);
342
  DCHECK_EQ(GetTracingController(), tracing_controller_);
343
  worker_thread_task_runner_ =
344
5528
      std::make_shared<WorkerThreadsTaskRunner>(thread_pool_size);
345
5528
}
346
347
22076
NodePlatform::~NodePlatform() {
348
11038
  Shutdown();
349
22076
}
350
351
6320
void NodePlatform::RegisterIsolate(Isolate* isolate, uv_loop_t* loop) {
352
12640
  Mutex::ScopedLock lock(per_isolate_mutex_);
353
12640
  auto delegate = std::make_shared<PerIsolatePlatformData>(isolate, loop);
354
6320
  IsolatePlatformDelegate* ptr = delegate.get();
355
  auto insertion = per_isolate_.emplace(
356
    isolate,
357
6320
    std::make_pair(ptr, std::move(delegate)));
358
6320
  CHECK(insertion.second);
359
6320
}
360
361
1
void NodePlatform::RegisterIsolate(Isolate* isolate,
362
                                   IsolatePlatformDelegate* delegate) {
363
2
  Mutex::ScopedLock lock(per_isolate_mutex_);
364
  auto insertion = per_isolate_.emplace(
365
    isolate,
366
1
    std::make_pair(delegate, std::shared_ptr<PerIsolatePlatformData>{}));
367
1
  CHECK(insertion.second);
368
1
}
369
370
5748
void NodePlatform::UnregisterIsolate(Isolate* isolate) {
371
11496
  Mutex::ScopedLock lock(per_isolate_mutex_);
372
5748
  auto existing_it = per_isolate_.find(isolate);
373
5748
  CHECK_NE(existing_it, per_isolate_.end());
374
5748
  auto& existing = existing_it->second;
375
5748
  if (existing.second) {
376
5747
    existing.second->Shutdown();
377
  }
378
5748
  per_isolate_.erase(existing_it);
379
5748
}
380
381
740
void NodePlatform::AddIsolateFinishedCallback(Isolate* isolate,
382
                                              void (*cb)(void*), void* data) {
383
740
  Mutex::ScopedLock lock(per_isolate_mutex_);
384
740
  auto it = per_isolate_.find(isolate);
385
740
  if (it == per_isolate_.end()) {
386
    cb(data);
387
    return;
388
  }
389
740
  CHECK(it->second.second);
390
740
  it->second.second->AddShutdownCallback(cb, data);
391
}
392
393
11033
void NodePlatform::Shutdown() {
394
11033
  if (has_shut_down_) return;
395
5519
  has_shut_down_ = true;
396
5519
  worker_thread_task_runner_->Shutdown();
397
398
  {
399
11038
    Mutex::ScopedLock lock(per_isolate_mutex_);
400
5519
    per_isolate_.clear();
401
  }
402
}
403
404
61807
int NodePlatform::NumberOfWorkerThreads() {
405
61807
  return worker_thread_task_runner_->NumberOfWorkerThreads();
406
}
407
408
9067
void PerIsolatePlatformData::RunForegroundTask(std::unique_ptr<Task> task) {
409
9067
  DebugSealHandleScope scope(isolate_);
410
9067
  Environment* env = Environment::GetCurrent(isolate_);
411
9067
  if (env != nullptr) {
412
15244
    v8::HandleScope scope(isolate_);
413
7626
    InternalCallbackScope cb_scope(env, Object::New(isolate_), { 0, 0 },
414
15252
                                   InternalCallbackScope::kNoFlags);
415
7626
    task->Run();
416
  } else {
417
    // The task is moved out of InternalCallbackScope if env is not available.
418
    // This is a required else block, and should not be removed.
419
    // See comment: https://github.com/nodejs/node/pull/34688#pullrequestreview-463867489
420
1441
    task->Run();
421
  }
422
9059
}
423
424
30
void PerIsolatePlatformData::DeleteFromScheduledTasks(DelayedTask* task) {
425
  auto it = std::find_if(scheduled_delayed_tasks_.begin(),
426
                         scheduled_delayed_tasks_.end(),
427
60
                         [task](const DelayedTaskPointer& delayed) -> bool {
428
30
          return delayed.get() == task;
429
30
      });
430
30
  CHECK_NE(it, scheduled_delayed_tasks_.end());
431
30
  scheduled_delayed_tasks_.erase(it);
432
30
}
433
434
30
void PerIsolatePlatformData::RunForegroundTask(uv_timer_t* handle) {
435
30
  DelayedTask* delayed = ContainerOf(&DelayedTask::timer, handle);
436
30
  delayed->platform_data->RunForegroundTask(std::move(delayed->task));
437
30
  delayed->platform_data->DeleteFromScheduledTasks(delayed);
438
30
}
439
440
11192
void NodePlatform::DrainTasks(Isolate* isolate) {
441
11192
  std::shared_ptr<PerIsolatePlatformData> per_isolate = ForNodeIsolate(isolate);
442
11192
  if (!per_isolate) return;
443
444
3540
  do {
445
    // Worker tasks aren't associated with an Isolate.
446
14731
    worker_thread_task_runner_->BlockingDrain();
447
14731
  } while (per_isolate->FlushForegroundTasksInternal());
448
}
449
450
22531
bool PerIsolatePlatformData::FlushForegroundTasksInternal() {
451
22531
  bool did_work = false;
452
453
  while (std::unique_ptr<DelayedTask> delayed =
454
28000
      foreground_delayed_tasks_.Pop()) {
455
5469
    did_work = true;
456
5469
    uint64_t delay_millis = llround(delayed->timeout * 1000);
457
458
5469
    delayed->timer.data = static_cast<void*>(delayed.get());
459
5469
    uv_timer_init(loop_, &delayed->timer);
460
    // Timers may not guarantee queue ordering of events with the same delay if
461
    // the delay is non-zero. This should not be a problem in practice.
462
5469
    uv_timer_start(&delayed->timer, RunForegroundTask, delay_millis, 0);
463
5469
    uv_unref(reinterpret_cast<uv_handle_t*>(&delayed->timer));
464
5469
    uv_handle_count_++;
465
466
16407
    scheduled_delayed_tasks_.emplace_back(delayed.release(),
467
5274
                                          [](DelayedTask* delayed) {
468
5274
      uv_close(reinterpret_cast<uv_handle_t*>(&delayed->timer),
469
798
               [](uv_handle_t* handle) {
470
        std::unique_ptr<DelayedTask> task {
471
1596
            static_cast<DelayedTask*>(handle->data) };
472
798
        task->platform_data->DecreaseHandleCount();
473
798
      });
474
5469
    });
475
5469
  }
476
  // Move all foreground tasks into a separate queue and flush that queue.
477
  // This way tasks that are posted while flushing the queue will be run on the
478
  // next call of FlushForegroundTasksInternal.
479
22531
  std::queue<std::unique_ptr<Task>> tasks = foreground_tasks_.PopAll();
480
31560
  while (!tasks.empty()) {
481
9037
    std::unique_ptr<Task> task = std::move(tasks.front());
482
9037
    tasks.pop();
483
9037
    did_work = true;
484
9037
    RunForegroundTask(std::move(task));
485
  }
486
22523
  return did_work;
487
}
488
489
102174
void NodePlatform::CallOnWorkerThread(std::unique_ptr<Task> task) {
490
102174
  worker_thread_task_runner_->PostTask(std::move(task));
491
102174
}
492
493
526
void NodePlatform::CallDelayedOnWorkerThread(std::unique_ptr<Task> task,
494
                                             double delay_in_seconds) {
495
526
  worker_thread_task_runner_->PostDelayedTask(std::move(task),
496
                                              delay_in_seconds);
497
526
}
498
499
500
28468
IsolatePlatformDelegate* NodePlatform::ForIsolate(Isolate* isolate) {
501
56936
  Mutex::ScopedLock lock(per_isolate_mutex_);
502
28468
  auto data = per_isolate_[isolate];
503
28468
  CHECK_NOT_NULL(data.first);
504
28468
  return data.first;
505
}
506
507
std::shared_ptr<PerIsolatePlatformData>
508
11196
NodePlatform::ForNodeIsolate(Isolate* isolate) {
509
22392
  Mutex::ScopedLock lock(per_isolate_mutex_);
510
22392
  auto data = per_isolate_[isolate];
511
11196
  CHECK_NOT_NULL(data.first);
512
11196
  return data.second;
513
}
514
515
4
bool NodePlatform::FlushForegroundTasks(Isolate* isolate) {
516
8
  std::shared_ptr<PerIsolatePlatformData> per_isolate = ForNodeIsolate(isolate);
517
4
  if (!per_isolate) return false;
518
4
  return per_isolate->FlushForegroundTasksInternal();
519
}
520
521
28267
std::unique_ptr<v8::JobHandle> NodePlatform::PostJob(v8::TaskPriority priority,
522
                                       std::unique_ptr<v8::JobTask> job_task) {
523
  return v8::platform::NewDefaultJobHandle(
524
28267
      this, priority, std::move(job_task), NumberOfWorkerThreads());
525
}
526
527
bool NodePlatform::IdleTasksEnabled(Isolate* isolate) {
528
  return ForIsolate(isolate)->IdleTasksEnabled();
529
}
530
531
std::shared_ptr<v8::TaskRunner>
532
28468
NodePlatform::GetForegroundTaskRunner(Isolate* isolate) {
533
28468
  return ForIsolate(isolate)->GetForegroundTaskRunner();
534
}
535
536
219266
double NodePlatform::MonotonicallyIncreasingTime() {
537
  // Convert nanos to seconds.
538
219266
  return uv_hrtime() / 1e9;
539
}
540
541
17767515
double NodePlatform::CurrentClockTimeMillis() {
542
17767515
  return SystemClockTimeMillis();
543
}
544
545
361239
v8::TracingController* NodePlatform::GetTracingController() {
546
361239
  CHECK_NOT_NULL(tracing_controller_);
547
361239
  return tracing_controller_;
548
}
549
550
5528
Platform::StackTracePrinter NodePlatform::GetStackTracePrinter() {
551
  return []() {
552
    fprintf(stderr, "\n");
553
    DumpBacktrace(stderr);
554
    fflush(stderr);
555
5528
  };
556
}
557
558
5529
v8::PageAllocator* NodePlatform::GetPageAllocator() {
559
5529
  return page_allocator_;
560
}
561
562
template <class T>
563
47396
TaskQueue<T>::TaskQueue()
564
    : lock_(), tasks_available_(), tasks_drained_(),
565
47396
      outstanding_tasks_(0), stopped_(false), task_queue_() { }
566
567
template <class T>
568
247182
void TaskQueue<T>::Push(std::unique_ptr<T> task) {
569
494364
  Mutex::ScopedLock scoped_lock(lock_);
570
247182
  outstanding_tasks_++;
571
247182
  task_queue_.push(std::move(task));
572
247182
  tasks_available_.Signal(scoped_lock);
573
247182
}
574
575
template <class T>
576
80180
std::unique_ptr<T> TaskQueue<T>::Pop() {
577
160360
  Mutex::ScopedLock scoped_lock(lock_);
578
80180
  if (task_queue_.empty()) {
579
57152
    return std::unique_ptr<T>(nullptr);
580
  }
581
46056
  std::unique_ptr<T> result = std::move(task_queue_.front());
582
23028
  task_queue_.pop();
583
23028
  return result;
584
}
585
586
template <class T>
587
124491
std::unique_ptr<T> TaskQueue<T>::BlockingPop() {
588
248946
  Mutex::ScopedLock scoped_lock(lock_);
589

240747
  while (task_queue_.empty() && !stopped_) {
590
116292
    tasks_available_.Wait(scoped_lock);
591
  }
592
124455
  if (stopped_) {
593
22082
    return std::unique_ptr<T>(nullptr);
594
  }
595
204746
  std::unique_ptr<T> result = std::move(task_queue_.front());
596
102373
  task_queue_.pop();
597
102373
  return result;
598
}
599
600
template <class T>
601
102373
void TaskQueue<T>::NotifyOfCompletion() {
602
204746
  Mutex::ScopedLock scoped_lock(lock_);
603
102373
  if (--outstanding_tasks_ == 0) {
604
45555
    tasks_drained_.Broadcast(scoped_lock);
605
  }
606
102373
}
607
608
template <class T>
609
14731
void TaskQueue<T>::BlockingDrain() {
610
29462
  Mutex::ScopedLock scoped_lock(lock_);
611
16061
  while (outstanding_tasks_ > 0) {
612
1330
    tasks_drained_.Wait(scoped_lock);
613
  }
614
14731
}
615
616
template <class T>
617
5519
void TaskQueue<T>::Stop() {
618
11038
  Mutex::ScopedLock scoped_lock(lock_);
619
5519
  stopped_ = true;
620
5519
  tasks_available_.Broadcast(scoped_lock);
621
5519
}
622
623
template <class T>
624
34027
std::queue<std::unique_ptr<T>> TaskQueue<T>::PopAll() {
625
68054
  Mutex::ScopedLock scoped_lock(lock_);
626
34027
  std::queue<std::unique_ptr<T>> result;
627
34027
  result.swap(task_queue_);
628
34027
  return result;
629
}
630
631
}  // namespace node